DOI QR코드

DOI QR Code

Influence of Alkali Activator Type and Amount of Addition on CO2 Uptake of GGBFS Geopolymer Pastes Containing Zeolite

알칼리계 활성화제의 종류 및 첨가량이 고로슬래그-제올라이트 지오폴리머 페이스트의 탄소포집에 미치는 영향에 관한 연구

  • Jang-Hyun Park (Smart Convergence Technology Institute, Hankyong National University) ;
  • Hyo-Min Kim (Department of Building Research, Korea Institute of Civil Engineering and Building Technology)
  • 박장현 (한경대학교 산학협력단 스마트융합기술연구센터) ;
  • 김효민 (한국건설기술연구원 건축연구본부)
  • Received : 2023.03.21
  • Accepted : 2023.03.31
  • Published : 2023.06.30

Abstract

In this study, the variations in CO2 uptake according to the type and amount of alkali-based activator (Ca(OH)2, CSA) of geopolymer paste were evaluated. As the amount of activator added to the geopolymer paste increased, the fluidity of the paste is decreased and the compressive strength increased. According to the type of activator, it was confirmed that the addition of Ca(OH)2 had a greater effect on improving the compressive strength than CSA. As a result of changes in chemical properties according to carbonation curing, the amount of C-S-H and C-A-S-H gels produced before carbonation increased as the amount of activator increased, and amount of CaCO3 produced after carbonation increased. The reactivity of the blast furnace slag and zeolite increased due to the addition of the activator, and the reactivity tended to increase as the amount of addition increased. As a result of CO2 uptake, 10.3 wt% when Ca(OH)2 10 % was added and 8.77 wt% when CSA 10 % was added was confirmed. It increased by 421 % and 388 % respectively, compared to the case where no activator was added.

본 연구에서는 고로슬래그 미분말-제올라이트로 구성된 지오폴리머 페이스트의 알칼리계 활성화제(Ca(OH)2, CSA)의 종류 및 첨가량에 따른 압축강도 및 화학적 조성의 변화와 CO2 포집량을 비교평가 하였다. 지오폴리머 페이스트에 첨가되는 알칼리계 활성화제의 첨가량이 증가할수록 굳기 전 페이스트의 유동성은 감소하였으며, 압축강도가 증가하였다. 활성화제 종류에 따른 평가 결과, CSA보다 Ca(OH)2를 첨가하는 것이 압축강도 향상 효과가 큰 것으로 확인되었다. CO2 양생에 따른 화학적특성의 변화를 비교평가 한 결과, 모든 실험 수준에서 알칼리계 활성화제의 첨가량이 증가할수록 탄산화 전 C-S-H, C-A-S-H gel의 생성량이 증가하였으며, 탄산화 이후 CaCO3 생성량이 증가하였다. 알칼리계 활성화제 첨가로 인하여 고로슬래그 미분말과 제올라이트의 반응성이 증가하였으며, 첨가량이 증가할수록 반응성도 증가하는 경향이 나타났다. 열중량 분석결과, 알칼리계 활성화제의 첨가량이 증가할수록 CO2 양생에 따른 CaCO3 분해구간 에서의 질량감소율이 증가하였으며, 10 % 첨가 시 Ca(OH)2의 경우 10.3 wt%, CSA의 첨가 시 8.77 w%의 CO2 uptake가 발생하였으며, 활성화제를 첨가하지 않은 경우보다 각 4.21배, 3.88배 증가한 것으로 확인되었다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었습니다.(과제번호 23UMRG-B158194-04)

References

  1. Ahn, H.Y., Song, J.H. (2017). Changes of compressive strength and chemical characteristics of alkali-activated slag concrete before and after carbon dioxide exposure, Journal of Korea Society of Waste Management, 34(7), 697-704. https://doi.org/10.9786/kswm.2017.34.7.697
  2. Amer, I., Kohail, M., El-Feky, M.S., Rashad, A., Khalaf, M.A. (2021). Characterization of alkali-activated hybrid slag/cement concrete, Ain Shams Engineering Journal, 12(1), 135-144. https://doi.org/10.1016/j.asej.2020.08.003
  3. Gartner, W.B., Gartner, W.C., Shaver, K.G., Carter, N.M., Reynolds, P.D. (2004). Handbook of Entrepreneurial Dynamics: The Process of Business Creation, Sage.
  4. Gartner, E., Quillin, K. (2007). Low-CO2 Cements Based on Calcium sulfoaluminates, Sustainability in the Cement and Concrete Industry, Norwegian Cement Association, September, 16, 95-105.
  5. Guerrieri, M., Sanjayan, J., Collins, F. (2009). Residual compressive behavior of alkali-activated concrete exposed to elevated temperatures, Fire and Materials: An International Journal, 33(1), 51-62. https://doi.org/10.1002/fam.983
  6. Jo, B.W., Kang, S.W., Park, S.K., Choi, J.S. (2011). A fundamental study on the characteristics of zeolite cement mortar, Journal of the Korea Concrete Institute, 23(2), 203-209. https://doi.org/10.4334/JKCI.2011.23.2.203
  7. Kim, J.T., Seo, D.S., Kim, G.J., Lee, J.K. (2010). Influence of alkaline-activator content on the compressive strength of aluminosilicate-based geopolymer, Journal of the Korean Ceramic Society, 47(3), 216-222. https://doi.org/10.4191/KCERS.2010.47.3.216
  8. Kwon, S.J., Wang, X.Y. (2019). Optimization of the mixture design of low-CO2 high-strength concrete containing silica fume, Advances in Civil Engineering, 2019, 7168703.
  9. Lee, S.H., Lee, S.B., Lee, H.S. (2009). Study on the evaluation CO2 emission-absorption of concrete in the view of carbonation, Journal of the Korea Concrete Institute, 21(1), 85-92. https://doi.org/10.4334/JKCI.2009.21.1.085
  10. Madani, H., Bagheri, A., Parhizkar, T. (2012). The pozzolanic reactivity of monodispersed nanosilica hydrosols and their influence on the hydration characteristics of Portland cement, Cement and Concrete Research, 42(12), 1563-1570. https://doi.org/10.1016/j.cemconres.2012.09.004
  11. Moon, E.J., Choi, Y.C. (2018). Development of carbon-capture binder using stainless steel argon oxygen decarburization slag activated by carbonation, Journal of Cleaner Production, 180, 642-654. https://doi.org/10.1016/j.jclepro.2018.01.189
  12. Nath, S.K., Kumar, S. (2013). Influence of iron making slags on strength and microstructure of fly ash geopolymer, Construction and Building Materials, 38, 924-930. https://doi.org/10.1016/j.conbuildmat.2012.09.070
  13. On, J.K., Kim, G.Y., Sasui, S., Lee, Y.C., Eu, H.M. (2021). Factors effecting the strength & durability of geopolymer binder: a Review, Journal of the Korean Recycled Construction Resources Institute, 9(4), 460-468.
  14. Ryu, G.S., Lee, Y.B., Koh, K.T., Chung, Y.S. (2013). The mechanical properties of fly ash-based geopolymer concrete with alkaline activators, Construction and Building Materials, 47, 409-418. https://doi.org/10.1016/j.conbuildmat.2013.05.069
  15. Wang, X.Y., Lee, H.S. (2019). Effect of global warming on the proportional design of low CO2 slag-blended concrete, Construction and Building Materials, 225, 1140-1151. https://doi.org/10.1016/j.conbuildmat.2019.07.134
  16. Yoon, C.B., Lee, H.S. (2020). Study on the effect of fineness and substitution rate of natural zeolites on chemical reaction and physical properties of cement mortar, Journal of the Korea Institute for Structural Maintenance and Inspection, 24(3), 96-103. https://doi.org/10.11112/JKSMI.2020.24.3.96
  17. Yoon, S.P., Park, J.C., Kim, H.T., Koo. J.M. (2021). A experimental investigation of selective CO2 adsorption in landfill gas with differently pre-treated zeolite13X, Journal of Energy Engineering, 30(4), 67-78. https://doi.org/10.5855/ENERGY.2021.30.4.067
  18. Zhang, Q.L., Li, Y.T., Chen, Q.S., Liu, Y.K., Feng, Y., Wang, D.L. (2021). Effects of temperatures and pH values on rheological properties of cemented paste backfill, Journal of Central South University, 28(6), 1707-1723. https://doi.org/10.1007/s11771-021-4728-4
  19. Zhao, F.Q., Ni, W., Wang, H.J., Liu, H.J. (2007). Activated fly ash/slag blended cement, Resources, Conservation and Recycling, 52(2), 303-313. https://doi.org/10.1016/j.resconrec.2007.04.002