• Title/Summary/Keyword: $CH_4$ fermentation

Search Result 102, Processing Time 0.03 seconds

Use of Nitrate-nitrogen as a Sole Dietary Nitrogen Source to Inhibit Ruminal Methanogenesis and to Improve Microbial Nitrogen Synthesis In vitro

  • Guo, W.S.;Schaefer, D.M.;Guo, X.X.;Ren, L.P.;Meng, Qingxiang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.4
    • /
    • pp.542-549
    • /
    • 2009
  • An in vitro study was conducted to determine the effect of nitrate-nitrogen used as a sole dietary nitrogen source on ruminal fermentation characteristics and microbial nitrogen (MN) synthesis. Three treatment diets were formulated with different nitrogen sources to contain 13% CP and termed i) nitrate-N diet (NND), ii) urea-N diet (UND), used as negative control, and iii) tryptone-N diet (TND), used as positive control. The results of 24-h incubations showed that nitrate-N disappeared to background concentrations and was not detectable in microbial cells. The NND treatment decreased net $CH_4$ production, but also decreased net $CO_2$ production and increased net $H_2$ production. Total VFA concentration was lower (p<0.05) for NND than TND. Suppression of $CO_2$ production and total VFA concentration may be linked to increased concentration of $H_2$. The MN synthesis was greater (p<0.001) for NND than UND or TND (5.74 vs. 3.31 or 3.34 mg/40 ml, respectively). Nitrate addition diminished methane production as expected, but also increased MN synthesis.

Evaluation of Different Yeast Species for Improving In vitro Fermentation of Cereal Straws

  • Wang, Zuo;He, Zhixiong;Beauchemin, Karen A.;Tang, Shaoxun;Zhou, Chuanshe;Han, Xuefeng;Wang, Min;Kang, Jinhe;Odongo, Nicholas E.;Tan, Zhiliang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.2
    • /
    • pp.230-240
    • /
    • 2016
  • Information on the effects of different yeast species on ruminal fermentation is limited. This experiment was conducted in a $3{\times}4$ factorial arrangement to explore and compare the effects of addition of three different live yeast species (Candida utilis 1314, Saccharomyces cerevisiae 1355, and Candida tropicalis 1254) at four doses (0, $0.25{\times}10^7$, $0.50{\times}10^7$, and $0.75{\times}10^7$ colony-forming unit [cfu]) on in vitro gas production kinetics, fiber degradation, methane production and ruminal fermentation characteristics of maize stover, and rice straw by mixed rumen microorganisms in dairy cows. The maximum gas production (Vf), dry matter disappearance (IVDMD), neutral detergent fiber disappearance (IVNDFD), and methane production in C. utilis group were less (p<0.01) than other two live yeast supplemented groups. The inclusion of S. cerevisiae reduced (p<0.01) the concentrations of ammonia nitrogen ($NH_3$-N), isobutyrate, and isovalerate compared to the other two yeast groups. C. tropicalis addition generally enhanced (p<0.05) IVDMD and IVNDFD. The $NH_3$-N concentration and $CH_4$ production were increased (p<0.05) by the addition of S. cerevisiae and C. tropicalis compared with the control. Supplementation of three yeast species decreased (p<0.05) or numerically decreased the ratio of acetate to propionate. The current results indicate that C. tropicalis is more preferred as yeast culture supplements, and its optimal dose should be $0.25{\times}10^7$ cfu/500 mg substrates in vitro.

Effects of Rice Bran Extracts Fermented with Lactobacillus plantarum on Neuroprotection and Cognitive Improvement in a Rat Model of Ischemic Brain Injury

  • Hong, Jeong Hwa;Kim, Ji Yeong;Baek, Seung Eun;Ingkasupart, Pajaree;Park, Hwa Jin;Kang, Sung Goo
    • Biomedical Science Letters
    • /
    • v.21 no.2
    • /
    • pp.92-102
    • /
    • 2015
  • This work aimed to study whether rice bran extract fermented with Lactobacillus plantarum (LW) promotes functional recovery and reduces cognitive impairment after ischemic brain injury. Ischemic brain injury was induced by middle cerebral artery occlusion (MCAO) in rats. Four groups were studied, namely the (1) sham, (2) vehicle, (3) donepezil, and (4) LW groups. Animals were injected with LW once a day for 7 days after middle cerebral artery occlusion. LW group showed significantly improved neurological function as compared to the vehicle group, as well as enhanced learning and memory in the Morris water maze. The LW group showed the greatest functional recovery. Moreover, the LW group showed an enhanced more survival cells anti-apoptotic effect in the cortex and neural cell densities in the hippocampal DG and CA1. In addition, this group showed enhanced expression of neurotrophic factors, antioxidant genes, and the acetylcholine receptor gene, as well as synaptophysin (SYP), Fox-3 (NeuN), doublecortin (DCX), and choline acetyltransferase (ChAT) proteins. Our findings indicate that LW treatment showed the largest effects in functional recovery and cognitive improvement after ischemic brain injury through stimulation of the acetylcholine receptor, antioxidant genes, neurotrophic factors, and expression of NeuN, SYP, DCX, and ChAT.

Digestibility, ruminal fermentation, and nitrogen balance with various feeding levels of oil palm fronds treated with Lentinus sajor-caju in goats

  • Hamchara, Puwadon;Chanjula, Pin;Cherdthong, Anusorn;Wanapat, Metha
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.10
    • /
    • pp.1619-1626
    • /
    • 2018
  • Objective: This study was an attempt to investigate the effect of levels of fungal (Lentinus sajor-caju) treated oil palm fronds (FTOPF) on digestibility, rumen fermentation, and nitrogen balance in goats. Methods: Four 16 month old male crossbred (Thai Native${\times}$Anglo Nubian) goats with initial body weights of $33.5{\pm}1.7kg$ were randomly assigned according to a $4{\times}4$ Latin square design. Four levels of FTOPF were assigned for feed intake. The experimental treatments consisted of 0%, 33%, 67%, and 100% of oil palm fronds (OPF) being replaced by FTOPF. Results: The results revealed that total dry matter intake and nutrient intake were not influenced (p>0.05) by the inclusion of FTOPF. However, the efficiency values of the digestibility of the dry matter, organic matter, crude protein, neutral detergent fiber, acid detergent fiber, and acid detergent lignin on FTOPF were higher (p<0.05) in treatments with 33%, 67%, and 100% of FTOPF compared with 0% of FTOPF. FTOPF feeding did not change the rumen pH, temperature, and $NH_3-N$. However, the FTOPF levels did affect the total volatile fatty acid (VFA), molar proportion of acetate, propionate, butyrate, ratio of acetic (propionic acid and acetic) plus butyric (propionic acid), and production of $CH_4$. The totals of VFA and propionate was lower in goat fed with 0% of FTOPF than in those of the other groups (p<0.05). The amount of nitrogen retention based on g/d/animal or the percentage of nitrogen retained was the lowest the goat fed with 0% of FTOPF (p<0.05), whereas nitrogen intake, excretion, and absorption were not changed among treatments. Conclusion: Based on this study, FTOPF could be effectively used as an alternative roughage source in total mixed ration diets, constituting at least up to 100% of OPF.

Impact of livestock industry on climate change: Case Study in South Korea - A review

  • Sun Jin Hur;Jae Min Kim;Dong Gyun Yim;Yohan Yoon;Sang Suk Lee;Cheorun Jo
    • Animal Bioscience
    • /
    • v.37 no.3
    • /
    • pp.405-418
    • /
    • 2024
  • In recent years, there has been a growing argument attributing the primary cause of global climate change to livestock industry, which has led to the perception that the livestock industry is synonymous with greenhouse gas (GHG) emissions. However, a closer examination of the global GHG emission by sector reveals that the energy sector is responsible for the majority, accounting for 76.2% of the total, while agriculture contributes 11.9%. According to data from the Food and Agriculture Organization of the United Nations (FAO), the total GHG emissions associate with the livestock supply chain amount to 14.5%. Within this, emissions from direct sources, such as enteric fermentation and livestock manure treatment, which are not part of the front and rear industries, represent only 7%. Although it is true that the increase in meat consumption driven by global population growth and rising incomes, has contributed to higher methane (CH4) emissions resulting from enteric fermentation in ruminant animals, categorizing the livestock industry as the primary source of GHG emissions oversimplifies a complex issue and disregards objective data. Therefore, it may be a misleading to solely focus on the livestock sector without addressing the significant emissions from the energy sector, which is the largest contributor to GHG emissions. The top priority should be the objective and accurate measurement of GHG emissions, followed by the development and implementation of suitable reduction policies for each industrial sector with significant GHG emissions contributions.

Effect of Protein Fractionation and Buffer Solubility of Forage Sources on In Vitro Fermentation Characteristics, Degradability and Gas Production (조사료 자원의 단백질 분획 및 Buffer 추출이 In Vitro 발효 성상, 분해율 및 Gas 생성량에 미치는 효과)

  • Jin, Guang Lin;Shinekhuu, Judder;Qin, Wei-Ze;Kim, Jong-Kyu;Ju, Jong-Kwan;Suh, Seong-Won;Song, Man-Kang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.1
    • /
    • pp.59-74
    • /
    • 2012
  • Buffer solubility and protein fractionation were evaluated from the hays (timothy, alfalfa and klein) and straws (tall fescue and rice), and $In$ $vitro$ trial was conducted to examine the effect of buffer extraction on fermentation characteristics, degradability and gas ($CO_2$ and $CH_4$) production. Buffer soluble protein (SP) content and A fraction in total protein were highest in alfalfa hay as 61% and 41.77%, respectively while lowest in rice straw (42.8% and 19.78%, respectively). No difference was observed in B1 fraction among forages but B2 fraction was slightly increased in klein hay (12.34%) and tall fescue straw (10.05%) compared with other forages (6.34~8.85%). B3 fraction of tall fescue was highest as 38.49% without difference among other forages while C fraction was highest in rice straw. pH in incubation solution was higher in all forages after extraction than before extraction at 3h (P<0.01) and 6h (P<0.05), and pH from hays of timothy and alfalfa was higher than the other forages at 6h (P<0.05) and 12h (P<0.001). Regardless of extraction, ammonia-N concentration from alfalfa hay was increased at all incubation times and extraction effect was appeared only at 3h incubation time (P<0.01). Total VFA concentration from alfalfa hay was highest up to 24h incubation while those from tall fescue straw and rice straw were lowest. Buffer extraction decreased (P<0.01~P<0.001) the total VFA concentration. Acetic acid proportion was increased (P<0.001) before extraction of forages but no difference was found between forages. Propionic acid($C_3$) proportion was also increased(P<0.001) before extraction in all forages than in straws at 3h, 24h and 48h incubations, and $C_3$ from hays were mostly higher (P<0.05) than from straws. Butyric acid proportion, however, was not affected by extraction at most incubation times. Parameter 'a' regarding to the dry matter (DM) degradation was increase (P<0.001) in all forages before extraction, and was decreased (P<0.05) in tall fescue straw and rice straw compared with hays. Parameter 'b' was also increased (P<0.001) before extraction but no difference was found between forages. Effective degradability of DM (EDDM) was higher (P<0.001) before extraction in most forages except for rice straw. Buffer extraction decreased (P<0.05) all parameters (a, b, and c) regrading to the crude protein (CP) degradation but no difference was found between forages. Effective degradation of CP (EDCP) was lower (P<0.05) in straws than in hays. Parameters 'a' and 'b' regarding to the NDF degradation (P<0.01) and effective degradability of NDF (EDNDF, P<0.001) were also higher in forages before extraction than after extraction but no difference was found between forages. Buffer extraction reduced (P<0.05~P<0.001) $CO_2$ production from all the forages uo to 24h incubation and its production was greater (P<0.05~P<0.01) from hays than straws. Methane ($CH_4$) production was also greater (P<0.01~P<0.001) in all forages at all incubation times, and its production was greater (P<0.05) from hays than from straws at most incubation times. Based on the results of the current study, it can be concluded that buffer solubility and CP fractionation might be closely related with $In$ $vitro$ VFA concentration, degradability and gas ($CO_2$ and $CH_4$) production. Thus, measurement of buffer solubility and protein fractionation of forages might be useful to improve TMR availability in the ruminants.

An experimental study to develop operation technique of solid waste landfill for utilization of biomass (바이오매스 활용형 폐기물 매립지공법 개발을 위한 실험적 연구)

  • Kim, Hye-Jin;Park, Jin-Kyu;Jeong, Min-Kyo;Lee, Nam-hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.1
    • /
    • pp.171-177
    • /
    • 2007
  • In order to investigate the effect of the methanogenic bacteria in bacteria in leachate on the degradability of landfill waste, this study has created 4 cylinder-shape PVC lysimeters (Diameter: 30cm, Height: 200cm, Volume: 140L) and for the biological treatment and recirculation of the leachate, two anaerobic batch reactors (Diameter: 20cm, Height: 30cm) were created. To simulate a conventional landfill, no recycling was done in L1. In L2, 1,068ml of leachate (twice of rainfall amount) was recycled. In L3 and L4, the leachate was anaerobically digested in a dark room (with $35{\pm}1^{\circ}C$) for a week and them recycled by 1,064ml and 2,128ml, respectively, with recycled water only. In terms of cumulative $CH_4$ production, however, L3 and L4 were much higher (three times) than L1 and L2. Between L3 and L4, the latter was 1.23 times higher than the former in terms of cumulative CH4 production. In other words, the more the methanogenic bacteria-activated leachate is recycled, the more active the degradation due to active methane fermentation by the recyled methanogenic bacteria. And methane recovery is different according to the amount of recycled the methanogenic bacteria in leachate.

  • PDF

Estimation of Greenhouse Gas Emissions from Korean Livestock During the Period 1990~2013 (1990년부터 2013년까지 우리나라 축산부문 온실가스 배출량 평가)

  • Kim, Minseok;Yang, Seung-Hak;Oh, Young Kyoon;Park, Kyu-Hyun
    • Journal of Climate Change Research
    • /
    • v.7 no.4
    • /
    • pp.383-390
    • /
    • 2016
  • According to the "Framework Act on Low Carbon, Green Growth", publication of annual national greenhouse gas (GHG) inventory report is mandatory. This annual GHG inventory report is used as basal data for GHG mitigation strategies. In the livestock sector, GHG emission trends from year 1990 to 2013 were estimated based on the 1996 IPCC guidelines with the Tier 1 methodology. GHG emissions from the livestock sector in 2013 were 9.9 million tons $CO_2-eq$., where emissions from enteric fermentation were 4.4 million tons $CO_2-eq$, increased by 47.4% over 1990 mainly due to the increase in non-dairy cattle population. On the other hand, GHG emissions from livestock manure in 2013 were 5.5 million tons $CO_2-eq$, increased by 75.5% over 1990 mainly due to the increase in non-dairy cattle, swine and poultry populations. Additional research is required to develop country-specific emission factors to estimate GHG emissions precisely from livestock in South Korea.

Structural Analysis of Natural Indigo Colorants Extracted from polygonum tintorium (쪽풀에서 추출한 천연 인디고 색소의 구조 분석)

  • 정인모;김인회;남성우
    • Textile Coloration and Finishing
    • /
    • v.10 no.3
    • /
    • pp.20-28
    • /
    • 1998
  • Natural indigo colorants were prepared by extraction of polygonum tintorium which was harvested just in the blooming season(in the late of July). The components were analyzed by TLC and HPLC, and its structures were analyzed by FT-IR, EI-mass and NMR. The dyeing mechanism and fermentation conditions were investigated. Its colour fastness was studied as well. The results obtained are summarized as follows ; The natural indigo powder was dissolved in DMSO and developed in eluent, $CHCl_3/CH_3CN(8.5:1.5v/v)$ by means of TLC for its quality analysis. It was segregated into indirubin as il red colour and indigo as a blue colour. In case of HPLC analysis, the retention times of indirubin and indigo were 7.442 and 6.543, respectively. FT-IR spectrum of indirubin showed a peak for NH residue between 3200 and $3300cm^{-1}.^1H-NMR$ spectrum for indigo displayed AA'BB' spin system caused by indole structure between 6.5 and 7.7ppm of H4, 5, 6 and 7, and -NH proton for indirubin showed an singlet between 10.88 and. 11.0ppm. EI-mass spectrum of indigo an d indirubin both disclosed their molecular size as 262 and it implies that these two substances are isomer.

  • PDF

Recycling of Lipid-extracted Algae Cell Residue for Microorganisms Cultivation and Bioenergy Production (미세조류 탈지세포잔류물의 미생물 배양 및 바이오에너지 생산으로의 재활용)

  • Dang, Nhat Minh;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.487-496
    • /
    • 2021
  • Microalgae is one of the promising biodiesel feedstock with high growth rates compared to those of terrestrial oil crops. Despite its numerous advantages, biodiesel production from microalgae needs to reduce energy demand and material costs further to go to commercialization. During solvent extraction of microalgal lipids, lipid-extracted algae (LEA) cell residue is generated as an organic solid waste, about 80-85% of original algal biomass, and requires an appropriate recycling or economic disposal. The resulting LEA still contains significant amount of carbohydrates, proteins, N, P, and other micronutrients. This review will focus on recent advancement in the utilization of LEA as: (i) utilization as nutrients or carbon sources for microalgae and other organisms, (ii) anaerobic digestion to produce biogas or co-fermentation to produce CH4 and H2, and (iii) conversion to other forms of biofuel through thermochemical degradation processes. Possible mutual benefits in the integration of microalgae cultivation-biodiesel production-resulting LEA with anaerobic digestion and thermochemical conversion are also discussed.