Acknowledgement
This work was supported by 2021 Research Fund of Myongji University.
References
- A. F. Ferreira, L. A. Ribeiro, A. P. Batista, P. Marques, B. P. Nobre, A. Palavra, P. P. da Silva, L. Gouveia, and C. Silva, A biorefinery from Nannochloropsis sp. microalga-Energy and CO2 emission and economic analyses, Bioresour. Technol., 138, 235-244 (2013). https://doi.org/10.1016/j.biortech.2013.03.168
- J. C. Quinn, A. Hanif, S. Sharvelle, and T. H. Bradley, Microalgae to biofuels: life cycle impacts of methane production of anaerobically digested lipid extracted algae, Bioresour. Technol., 171, 37-43 (2014). https://doi.org/10.1016/j.biortech.2014.08.037
- J. A. Posada, L. B. Brentner, A. Ramirez, and M. K. Patel, Conceptual design of sustainable integrated microalgae biorefineries: Parametric analysis of energy use, greenhouse gas emissions and techno-economics. Algal Res., 17, 113-131 (2016). https://doi.org/10.1016/j.algal.2016.04.022
- M. Collotta, P. Champagne, W. Mabee, G. Tomasoni, and M. Alberti, Life Cycle analysis of the production of biodiesel from microalgae. In: R. Basosi, M. Cellura, S. Longo, M. Parisi (eds), Life Cycle Assessment of Energy Systems and Sustainable Energy Technologies. Green Energy and Technology, Springer, Cham. (2019).
- G. Saranya and T. V. Ramachandra, Life cycle assessment of biodiesel from estuarine microalgae, Energy Convers. Manage.: X, 8, 100065 (2020).
- F. Gentili, Microalgal biomass and lipid production in mixed municipal, dairy, pulp and paper wastewater together with added flue gases, Bioresour. Technol., 169, 27-32 (2014). https://doi.org/10.1016/j.biortech.2014.06.061
- W. Y. Cheah, P. L. Show, J.-S. Chang, T. C. Ling, and J. C. Juan, Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae, Bioresour. Technol., 184, 190-201 (2015). https://doi.org/10.1016/j.biortech.2014.11.026
- L. C. Fernandez-Linares, C. G. Barajas, E. D. Paramo, and J. Corona, Assessment of Chlorella vulgaris and indigenous microalgae biomass with treated wastewater as growth culture medium. Bioresour. Technol., 244, 400-406 (2017). https://doi.org/10.1016/j.biortech.2017.07.141
- A. Aslam, S. R. Thomas-Hall, T. A. Mughal, and P. M. Schenk, Selection and adaptation of microalgae to growth in 100% unfiltered coal-fired flue gas, Bioresour. Technol., 233, 271-283 (2017). https://doi.org/10.1016/j.biortech.2017.02.111
- F. M. Santos and J. C. M. Pires, Nutrient recovery from waste-waters by microalgae and its potential application as bio-char, Bioresour. Technol., 267, 725-731 (2018). https://doi.org/10.1016/j.biortech.2018.07.119
- P. Bohutskyi, S. Chow, B. Ketter, M. J. Betenbaugh, E. J. Bouwer, Prospects for methane production and nutrient recycling from lipid extracted residues and whole Nannochloropsis salina using anaerobic digestion, Appl. Energy 154, 718-731 (2015). https://doi.org/10.1016/j.apenergy.2015.05.069
- C. D. de Farias Silva, A. Bertucco, Bioethanol from microalgae and cyanobacteria: A review and technological outlook, Process Biochem., 51, 1833-1842 (2016). https://doi.org/10.1016/j.procbio.2016.02.016
- K. Azizi, M. K. Moraveji, and H. A. Najafabadi, A review on bio-fuel production from microalgal biomass by using pyrolysis method, Renew. Sustain. Energy Rev., 82, 3046-3059 (2018). https://doi.org/10.1016/j.rser.2017.10.033
- L. M. Gonzalez-Gonzalez, D. F. Correa, S. Ryan, P. D. Jensen, S. Pratt, and P. M. Schenk, Integrated biodiesel and biogas production from microalgae: Towards a sustainable closed loop through nutrient recycling, Renew. Sustain. Energy Rev., 82, 1137-1148 (2018). https://doi.org/10.1016/j.rser.2017.09.091
- X. Wang, L. Sheng, and X. Yang, Pyrolysis characteristics and pathways of protein, lipid and carbohydrate isolated from microalgae Nannochloropsis sp., Bioresour. Technol., 229, 119-125 (2018). https://doi.org/10.1016/j.biortech.2017.01.018
- S. M. Desjardins, C. A. Laamanen, N. Basiliko, and J. A. Scott, Utilization of lipid-extracted biomass (LEB) to improve the economic feasibility of biodiesel production from green microalgae, Environ. Rev., 28(3), 325-338 (2020). https://doi.org/10.1139/er-2020-0004
- K. Lee, G. Kim, and D. N. Minh, Life cycle assessment for biodiesel production through microalgae cultivation in marine floating culture system. Research Report, Development of Marine Microalgal Biofuel Production Technology (PJT20025), Ministry of Oceans and Fisheries, Korea (2019).
- E. Jankowska, A. K. Sahu, and P. Oleskowicz-Popiel, Biogas from microalgae: Review on microalgae's cultivation, harvesting and pretreatment for anaerobic digestion, Renew. Sustain. Energy Rev., 75, 692-709 (2017). https://doi.org/10.1016/j.rser.2016.11.045
- J. H. Park, J. Y. Jeong, D. Hee, and J. J. Dong, Anaerobic digestibility of algal bioethanol residue, Bioresour. Technol., 113, 78-82 (2012). https://doi.org/10.1016/j.biortech.2011.12.123
- A. E.-F. Abomohra, H. Eladel, M. El-Esawi, S. Wang, Q. Wang, and D. Hanelt, Effect of lipid-free microalgal biomass and waste glycerol on growth and lipid production of Scenedesmus obliquus: Innovative waste recycling for extraordinary lipid production, Bioresour. Technol., 249, 992-999 (2018). https://doi.org/10.1016/j.biortech.2017.10.102
- A. Guldhe, S. Kumari, L. Ramanna, P. Ramsundar, P. Singh, I. Rawat, and F. Bux, Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation, J. Environ. Manag., 203, 299-315 (2017). https://doi.org/10.1016/j.jenvman.2017.08.012
- S. Mishra and K. Mohanty, Comprehensive characterization of microalgal isolates and lipid-extracted biomass as zero-waste bioenergy feedstock: An integrated bioremediation and biorefinery approach, Bioresour. Technol., 273, 177-184 (2019). https://doi.org/10.1016/j.biortech.2018.11.012
- E. Sforza, E. Barbera, F. Girotto, R. Cossu, and A. Bertucco, Anaerobic digestion of lipid-extracted microalgae: Enhancing nutrient recovery towards a closed loop recycling, Biochem. Eng. J., 121, 138-146 (2017).
- Z. Yang, R. Guo, X. Xu, X. Fan, and X. Li, Enhanced hydrogen production from lipid-extracted microalgal biomass residues through pretreatment, Int. J. Hydrogen Energy, 35, 9618-9623 (2010). https://doi.org/10.1016/j.ijhydene.2010.07.017
- A. Ghimire, G. Kumar, P. Sivagurunathan, S. Shobana, G.D. Saratale, H.W. Kim, V. Luongo, G. Esposito, and R. Munoz, Bio-hythane production from microalgae biomass: Key challenges and potential opportunities for algal bio-refineries, Bioresour. Technol., 241, 525-536 (2017). https://doi.org/10.1016/j.biortech.2017.05.156
- D.-H. KIm, S. Kang, and Y.-M. Yun, Changes in microbial community associated with dechlorination of leftover chloroform in two-stage anaerobic Co-fermentation (H2+CH4) of lipid extracted microalgae waste with food waste leachate, Int. J. Hydrogen Energy, 44, 2266-2273 (2019). https://doi.org/10.1016/j.ijhydene.2018.06.069
- H. H. Bui, K. Q. Tran, and W. H. Chen, Pyrolysis of microalgae residues-a Kinetic study, Bioresour. Technol., 199, 362-366 (2015). https://doi.org/10.1016/j.biortech.2015.08.069
- X. Ji, B. Liu, G. Chen, and W. Ma, The pyrolysis of lipid-extracted residue of Tribonema minus in a fixed-bed reactor, J. Anal. Appl. Pyrolysis, 116, 231-236 (2015). https://doi.org/10.1016/j.jaap.2015.09.006
- V. Benavente, S. L. F. G. Gentili, and S. Jansson, Influence of lipid extraction and processing conditions on hydrothermal conversion of microalgae feedstocks-Effect on hydrochar composition, secondary char formation and phytotoxicity, Chem. Eng. J., 428, 129559 (2022). https://doi.org/10.1016/j.cej.2021.129559
- R. Maurya, C. Paliwal, K. Chokshi, I. Pancha, T. Ghosh, G. G. Satpati, R. Pal, A. Ghosh, and S. Mishra, Hydrolysate of lipid extracted microalgal biomass residue: an algal growth promoter and enhancer, Bioresour. Technol., 207, 197-204 (2016). https://doi.org/10.1016/j.biortech.2016.02.018
- B. Zhang and K. Ogden, Nitrogen balances and impacts on the algae cultivation-extraction-digestion-cultivation process, Algal Res. 39, 101434 (2019). https://doi.org/10.1016/j.algal.2019.101434
- R. Maurya, C. Paliwal, T. Ghosh, I. Pancha, K. Chokshi, M. Mitra, A. Ghosh, and S. Mishra, Applications of de-oiled microalgal biomass towards development of sustainable biorefinery, Bioresour. Technol., 214, 787-796 (2016). https://doi.org/10.1016/j.biortech.2016.04.115
- Y. Tejido-Nunez, E. Aymerich, L. Sancho, and D. Refardt, Treatment of aquaculture effluent with Chlorella vulgaris and Tetradesmus obliquus: The effect of pretreatment on microalgae growth and nutrient removal efficiency, Ecol. Eng., 136, 1-9 (2019). https://doi.org/10.1016/j.ecoleng.2019.05.021
- M. M. R. Talukder, P. Das, and J. C. Wu, Microalgae (Nannochloropsis salina) biomass to lactic acid and lipid, Biochem. Eng. J., 68, 109-113 (2012). https://doi.org/10.1016/j.bej.2012.07.001
- I. Pancha, K. Chokshi, R. Maurya, S. Bhattacharya, P. Bachani, and S. Mishra, Comparative evaluation of chemical and enzymatic saccharification of mixotrophically grown de-oiled microalgal biomass for reducing sugar production, Bioresour. Technol., 204, 9-16 (2016). https://doi.org/10.1016/j.biortech.2015.12.078
- E. P. Knoshaug, A. Mohagheghi, N. J. Nagle, and J. J. Stickel, Demonstration of parallel algal processing: production of renewable diesel blendstock and a high-value chemical intermediate, Green Chem., 20, 457-468 (2018). https://doi.org/10.1039/c7gc02295f
- M. Mirsiaghi, Bioconversion of Lipid-extracted Algal Biomass into Ethanol, PhD Dissertation, Colorado State University, USA (2016).
- M. E. Alzate, R. Munoz, F. Rogalla, F. Fdz-Polanco, and S. I. Perez-Elvira, Biochemical methane potential of microalgae biomass after lipid extraction, Chem. Eng., J. 243, 405-410 (2014). https://doi.org/10.1016/j.cej.2013.07.076
- F. A. Ansari, A. Shriwastav, S. K. Gupta, I. Rawat, A. Guldhe, and F. Bux, Lipid extracted algae as a source for protein and reduced sugar: a step closer to the biorefinery, Bioresour. Technol., 179, 559-564 (2015). https://doi.org/10.1016/j.biortech.2014.12.047
- N. Rashid, M. S. U. Rehman, and J. I. Han, Recycling and reuse of spent microalgal biomass for sustainable biofuels, Biochem. Eng. J., 75, 101-107 (2013). https://doi.org/10.1016/j.bej.2013.04.001
- M. Rizwan, G. Mujtaba, S. A. Memon, K. Lee, and N. Rashid, Exploring the potential of microalgae for new biotechnology applications and beyond: A review, Renew. Sustain. Energy Rev., 92, 394-404 (2018). https://doi.org/10.1016/j.rser.2018.04.034
- R. Praveenkumar, B. Kim, E. Choi, K. Lee, J.-Y. Park, J.-S. Lee, Y.-C. Lee, and Y.-K. Oh, Improved biomass and lipid production in a mixotrophic culture of Chlorella sp. KR-1 with addition of coal-fired flue-gas, Bioresour. Technol., 171, 500-505 (2014). https://doi.org/10.1016/j.biortech.2014.08.112
- L. Wang, L. Chen, S. Wu, and J. Ye, Non-airtight fermentation of sugar beet pulp with anaerobically digested dairy manure to provide acid-rich hydrolysate for mixotrophic microalgae cultivation, Bioresour. Technol., 278, 175-179 (2019). https://doi.org/10.1016/j.biortech.2019.01.075
- N. M. Dang and K. Lee, Utilization of organic liquid fertilizer in microalgae cultivation for biodiesel production, Biotechnol. Bioprocess Eng., 23, 406-414 (2018).
- C. Rosch, J. Skarka, and N. Wegerer, Materials flow modeling of nutrient recycling in biodiesel production from microalgae, Bioresour. Technol., 107, 191-199 (2012). https://doi.org/10.1016/j.biortech.2011.12.016
- N. M. Dang and K. Lee, Recent trends of using alternative nutrient sources for microalgae cultivation as a feedstock of biodiesel production, Appl. Chem. Eng., 29, 1-9 (2018). https://doi.org/10.14478/ACE.2018.1002
- W. Farooq, W.and I. Suh, M.and S. Park, and J. W. Yang, Water use and its recycling in microalgae cultivation for biofuel application, Bioresour. Technol., 184, 73-81 (2015). https://doi.org/10.1016/j.biortech.2014.10.140
- N. M. Dang and K. Lee, Decolorization of organic fertilizer using advanced oxidation process and its application for microalgae cultivation, J. Ind. Eng. Chem., 59, 297-303 (2018). https://doi.org/10.1016/j.jiec.2017.10.035
- H. Zheng, Z. Gao, F. Yin, X. Ji, and H. Huang, Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis, Bioresour. Technol,. 117, 1-6 (2012). https://doi.org/10.1016/j.biortech.2012.04.007
- H. Zheng, H., Z. Gao, F. Yin, X. Ji, and H. Huang, Effect of CO2 supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues, Bioresour. Technol., 126, 24-30 (2012). https://doi.org/10.1016/j.biortech.2012.09.048
- X. Ma, H. Zheng, H. Huang, Y. Liu, and R. Ruan, Effects of temperature and substrate concentration on lipid production by Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues (LMBRs), Appl. Biochem. Biotechnol., 174, 1631-1650 (2014). https://doi.org/10.1007/s12010-014-1134-5
- H. Zheng, X. Ma, Z. Gao, Y. Wan, M. Min, W. Zhou, Y. Li, Y. Liu, H. Huang, P. Chen, and R. Ruan, Lipid production of heterotrophic Chlorella sp. from hydrolysate mixtures of lipid-extracted microalgal biomass residues and molasses, Appl. Biochem. Biotechnol., 177 (3), 662-674 (2015). https://doi.org/10.1007/s12010-015-1770-4
- M. Moon, C. W. Kim, W. Farooq, W .I. Suh, A. Shrivastav, M. S. Park, S. K. Mishra, and J. W. Yang, Utilization of lipid extracted algal biomass and sugar factory wastewater for algal growth and lipid enhancement of Ettlia sp., Bioresour. Technol., 163, 180-185 (2014). https://doi.org/10.1016/j.biortech.2014.04.033
- N. Arora, A. Patel, P. A. Pruthi, and V. Pruthi, Recycled de-oiled algal biomass extract as a feedstock for boosting biodiesel production from Chlorella minutissima, Appl. Biochem. Biotechnol., 180, 1534-1541 (2016). https://doi.org/10.1007/s12010-016-2185-6
- J. Lowrey, R. E. Armenta, and M. S. Brooks, Sequential recycling of enzymatic lipid-extracted hydrolysate in fermentations with a thraustochytrid, Bioresour. Technol., 209, 333-342 (2016). https://doi.org/10.1016/j.biortech.2016.03.030
- P. Jain, N. Arora, J. Mehtani, V. Pruthi, and C. B. Majumder, Pretreated algal bloom as a substantial nutrient source for microalgae cultivation for biodiesel production, Bioresour. Technol., 242, 152-160 (2017). https://doi.org/10.1016/j.biortech.2017.03.156
- O. K. Lee, A. L. Kim, D. H. Seong, C. G. Lee, Y. T. Jung, J. W. Lee, and E. Y. Lee, Chemoenzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga Dunaliella tertiolecta, Bioresour. Technol., 132, 197-201 (2013). https://doi.org/10.1016/j.biortech.2013.01.007
- M. Mirsiaghi and K. F. Reardon, Conversion of lipid-extracted Nannochloropsis salina biomass into fermentable sugars, Algal Res., 8, 145-152 (2015). https://doi.org/10.1016/j.algal.2015.01.013
- C. Kavitha, V. Ashokkumar, S. Chinnasamy, S. Bhaskar, and R. Rengasamy, Pretreatment of lipid extracted Botryococcus braunii spent biomass for bioethanol production, Int. J. Curr. Biotechnol., 2, 11-18 (2014).
- M. T. Gao, T. Shimamura, N. Ishida, and H. Takahashi, Investigation of utilization of the algal biomass residue after oil extraction to lower the total production cost of biodiesel, J. Biosci. Bioeng., 114, 330-333 (2012). https://doi.org/10.1016/j.jbiosc.2012.04.002
- Y. H. Seo, M. Sung, and J. I. Han, Recycle of algal residue suspension from acid-catalyzed hot-water extraction (AHE) as substrate of oleaginous yeast Cryptococcus sp., Fuel, 141, 222-225 (2015). https://doi.org/10.1016/j.fuel.2014.10.043
- H.-H. Cheng, L.-M. Whang, K.-C. Chan, M.-C. Chung, S,-H. Wu, C.-P. Liu, S.-Y. Tien, S.-Y. Chen, J.-S. Chang, and W.-J. Lee, Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum, Bioresour. Technol., 184, 379-385 (2015). https://doi.org/10.1016/j.biortech.2014.11.017
- H. Gu, N. Nagle, P. T. Pienkos, and M. C. Posewitz, Nitrogen recycling from fuel-extracted algal biomass: residuals as the sole nitrogen source for culturing Scenedesmus acutus, Bioresour. Technol., 184, 153-160 (2015). https://doi.org/10.1016/j.biortech.2014.11.095
- J. Park, H. F. Jin, B. R. Lim, K. Y. Park, and K. Lee, Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp., Bioresour. Technol., 101, 8649-8657 (2010). https://doi.org/10.1016/j.biortech.2010.06.142
- L. Yang, X. Tan, B. Si, F. Zhao, H. Chu, X. Zhou, and Y. Zhang, Nutrients recycling and energy evaluation in a closed microalgal biofuel production system, Algal Res., 33, 399-405 (2018). https://doi.org/10.1016/j.algal.2018.06.009
- P. Bohutskyi, B. Ketter, S. Chow, K. J. Adams, M. J. Betenbaugh, F. T. Allnutt, and E. J. Bouwer, Anaerobic digestion of lipid-extracted Auxenochlorella protothecoides biomass for methane generation and nutrient recovery, Bioresour. Technol., 183, 229-239 (2015). https://doi.org/10.1016/j.biortech.2015.02.012
- R. Maurya, K. Chokshi, T. Ghosh, K. Trivedi, I. Pancha, D. Kubavat, S. Mishra, and A. Ghosh, Lipid extracted microalgal biomass residue as a fertilizer substitute for Zea mays L, Front. Plant Sci., 6, 1266 (2016).
- M. Grzesik, Z. Romanowska-Duda, and H. M. Kalaji, Effectiveness of cyanobacteria and green algae in enhancing the photosynthetic performance and growth of willow (Salix viminalis L.) plants under limited synthetic fertilizers application, Photosynthetica, 55, 510-521 (2017). https://doi.org/10.1007/s11099-017-0716-1
- J. M. Juarez, E. R. Pastor, J. M. F. Sevilla, R. M. Torre, P. A. Garcia-Encina, and S .B. Rodriguez, Effect of pretreatments on biogas production from microalgae biomass grown in pig manure treatment plants, Bioresour. Technol., 257, 30-38 (2018). https://doi.org/10.1016/j.biortech.2018.02.063
- H. L. Bryant, I. Gogichaishvili, D. Anderson, J. W. Richardson, J. Sawyer, T. Wickersham, and M. L. Drewery, The value of post-extracted algae residue. Algal Res., 1, 185-193 (2012). https://doi.org/10.1016/j.algal.2012.06.001
- S. Gupta, S. Gupta, Mansha, and S. Sharma, Management of barren land soil using waste algal residue and agricultural residue, J. Algal Biomass Util. 3, 1-6 (2012).
- K. L. Rothlisberger-Lewis, J. L. Foster, and F. M. Hons, Soil carbon and nitrogen dynamics as affected by lipid-extracted algae application, Geoderma, 262, 140-146 (2016). https://doi.org/10.1016/j.geoderma.2015.08.018
- E. Barbera, E. Sforza, S. Kumar, T. Morosinotto, A. Bertucco, Cultivation of Scenedesmus obliquus in liquid hydrolysate from flash hydrolysis for nutrient recycling, Bioresour. Technol., 207, 59-66 (2016). https://doi.org/10.1016/j.biortech.2016.01.103
- E. Barbera, E. Sforza, V. Musolino, S. Kumar, and A. Bertucco, Nutrient recycling in large-scale microalgal production: Mass and energy analysis of two recovery strategies by process simulation, Chem. Eng. Res. Des., 132, 785-794 (2018). https://doi.org/10.1016/j.cherd.2018.02.028
- E.A. Johnson, Z. Liu, E. Salmon, and P. Hatcher, One-step conversion of algal biomass to biodiesel with formation of an algal char as potential fertilizer. In: J. W. Lee (Ed.), Advanced Biofuels and Bioproducts, pp. 695-705, Springer, New York (2013).
- K. Wang, R. C. Brown, S. Homsy, L. Martinez, and S. S. Sidhu, Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production, Bioresour. Technol., 127, 494- 499 (2013). https://doi.org/10.1016/j.biortech.2012.08.016
- Y. M. Chang, W. T. Tsai, and M. H. Li, Characterization of activated carbon prepared from Chlorella-based algal residue, Bioresour. Technol., 184, 344-348 (2015). https://doi.org/10.1016/j.biortech.2014.09.131
- Y. M. Chang, W. T. Tsai, M. H. Li, Chemical characterization of char derived from slow pyrolysis of microalgal residue, J. Anal. Appl. Pyrolysis, 111, 88-93 (2015). https://doi.org/10.1016/j.jaap.2014.12.004
- M. Francavilla, P. Kamaterou, S. Intini, M. Monteleone, and A. Zabaniotou, Cascading microalgae biorefinery: Fast pyrolysis of Dunaliella tertiolecta lipid extracted-residue, Algal Res., 11, 184-193 (2015). https://doi.org/10.1016/j.algal.2015.06.017
- D. Chiaramonti, M. Prussi, M. Buffi, A. M. Rizzo, and L. Pari, Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production, Appl. Energy, 185, 963-972 (2017). https://doi.org/10.1016/j.apenergy.2015.12.001