DOI QR코드

DOI QR Code

Recycling of Lipid-extracted Algae Cell Residue for Microorganisms Cultivation and Bioenergy Production

미세조류 탈지세포잔류물의 미생물 배양 및 바이오에너지 생산으로의 재활용

  • Dang, Nhat Minh (VNU Key Laboratory of Advanced Materials for Green Growth, VNU University of Science, Vietnam National University) ;
  • Lee, Kisay (Department of Environmental Engineering and Energy, Myongji University)
  • 당낫민 (베트남 하노이 국립대학교) ;
  • 이기세 (명지대학교 환경에너지공학과)
  • Received : 2021.09.13
  • Accepted : 2021.09.27
  • Published : 2021.10.10

Abstract

Microalgae is one of the promising biodiesel feedstock with high growth rates compared to those of terrestrial oil crops. Despite its numerous advantages, biodiesel production from microalgae needs to reduce energy demand and material costs further to go to commercialization. During solvent extraction of microalgal lipids, lipid-extracted algae (LEA) cell residue is generated as an organic solid waste, about 80-85% of original algal biomass, and requires an appropriate recycling or economic disposal. The resulting LEA still contains significant amount of carbohydrates, proteins, N, P, and other micronutrients. This review will focus on recent advancement in the utilization of LEA as: (i) utilization as nutrients or carbon sources for microalgae and other organisms, (ii) anaerobic digestion to produce biogas or co-fermentation to produce CH4 and H2, and (iii) conversion to other forms of biofuel through thermochemical degradation processes. Possible mutual benefits in the integration of microalgae cultivation-biodiesel production-resulting LEA with anaerobic digestion and thermochemical conversion are also discussed.

Keywords

Acknowledgement

This work was supported by 2021 Research Fund of Myongji University.

References

  1. A. F. Ferreira, L. A. Ribeiro, A. P. Batista, P. Marques, B. P. Nobre, A. Palavra, P. P. da Silva, L. Gouveia, and C. Silva, A biorefinery from Nannochloropsis sp. microalga-Energy and CO2 emission and economic analyses, Bioresour. Technol., 138, 235-244 (2013). https://doi.org/10.1016/j.biortech.2013.03.168
  2. J. C. Quinn, A. Hanif, S. Sharvelle, and T. H. Bradley, Microalgae to biofuels: life cycle impacts of methane production of anaerobically digested lipid extracted algae, Bioresour. Technol., 171, 37-43 (2014). https://doi.org/10.1016/j.biortech.2014.08.037
  3. J. A. Posada, L. B. Brentner, A. Ramirez, and M. K. Patel, Conceptual design of sustainable integrated microalgae biorefineries: Parametric analysis of energy use, greenhouse gas emissions and techno-economics. Algal Res., 17, 113-131 (2016). https://doi.org/10.1016/j.algal.2016.04.022
  4. M. Collotta, P. Champagne, W. Mabee, G. Tomasoni, and M. Alberti, Life Cycle analysis of the production of biodiesel from microalgae. In: R. Basosi, M. Cellura, S. Longo, M. Parisi (eds), Life Cycle Assessment of Energy Systems and Sustainable Energy Technologies. Green Energy and Technology, Springer, Cham. (2019).
  5. G. Saranya and T. V. Ramachandra, Life cycle assessment of biodiesel from estuarine microalgae, Energy Convers. Manage.: X, 8, 100065 (2020).
  6. F. Gentili, Microalgal biomass and lipid production in mixed municipal, dairy, pulp and paper wastewater together with added flue gases, Bioresour. Technol., 169, 27-32 (2014). https://doi.org/10.1016/j.biortech.2014.06.061
  7. W. Y. Cheah, P. L. Show, J.-S. Chang, T. C. Ling, and J. C. Juan, Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae, Bioresour. Technol., 184, 190-201 (2015). https://doi.org/10.1016/j.biortech.2014.11.026
  8. L. C. Fernandez-Linares, C. G. Barajas, E. D. Paramo, and J. Corona, Assessment of Chlorella vulgaris and indigenous microalgae biomass with treated wastewater as growth culture medium. Bioresour. Technol., 244, 400-406 (2017). https://doi.org/10.1016/j.biortech.2017.07.141
  9. A. Aslam, S. R. Thomas-Hall, T. A. Mughal, and P. M. Schenk, Selection and adaptation of microalgae to growth in 100% unfiltered coal-fired flue gas, Bioresour. Technol., 233, 271-283 (2017). https://doi.org/10.1016/j.biortech.2017.02.111
  10. F. M. Santos and J. C. M. Pires, Nutrient recovery from waste-waters by microalgae and its potential application as bio-char, Bioresour. Technol., 267, 725-731 (2018). https://doi.org/10.1016/j.biortech.2018.07.119
  11. P. Bohutskyi, S. Chow, B. Ketter, M. J. Betenbaugh, E. J. Bouwer, Prospects for methane production and nutrient recycling from lipid extracted residues and whole Nannochloropsis salina using anaerobic digestion, Appl. Energy 154, 718-731 (2015). https://doi.org/10.1016/j.apenergy.2015.05.069
  12. C. D. de Farias Silva, A. Bertucco, Bioethanol from microalgae and cyanobacteria: A review and technological outlook, Process Biochem., 51, 1833-1842 (2016). https://doi.org/10.1016/j.procbio.2016.02.016
  13. K. Azizi, M. K. Moraveji, and H. A. Najafabadi, A review on bio-fuel production from microalgal biomass by using pyrolysis method, Renew. Sustain. Energy Rev., 82, 3046-3059 (2018). https://doi.org/10.1016/j.rser.2017.10.033
  14. L. M. Gonzalez-Gonzalez, D. F. Correa, S. Ryan, P. D. Jensen, S. Pratt, and P. M. Schenk, Integrated biodiesel and biogas production from microalgae: Towards a sustainable closed loop through nutrient recycling, Renew. Sustain. Energy Rev., 82, 1137-1148 (2018). https://doi.org/10.1016/j.rser.2017.09.091
  15. X. Wang, L. Sheng, and X. Yang, Pyrolysis characteristics and pathways of protein, lipid and carbohydrate isolated from microalgae Nannochloropsis sp., Bioresour. Technol., 229, 119-125 (2018). https://doi.org/10.1016/j.biortech.2017.01.018
  16. S. M. Desjardins, C. A. Laamanen, N. Basiliko, and J. A. Scott, Utilization of lipid-extracted biomass (LEB) to improve the economic feasibility of biodiesel production from green microalgae, Environ. Rev., 28(3), 325-338 (2020). https://doi.org/10.1139/er-2020-0004
  17. K. Lee, G. Kim, and D. N. Minh, Life cycle assessment for biodiesel production through microalgae cultivation in marine floating culture system. Research Report, Development of Marine Microalgal Biofuel Production Technology (PJT20025), Ministry of Oceans and Fisheries, Korea (2019).
  18. E. Jankowska, A. K. Sahu, and P. Oleskowicz-Popiel, Biogas from microalgae: Review on microalgae's cultivation, harvesting and pretreatment for anaerobic digestion, Renew. Sustain. Energy Rev., 75, 692-709 (2017). https://doi.org/10.1016/j.rser.2016.11.045
  19. J. H. Park, J. Y. Jeong, D. Hee, and J. J. Dong, Anaerobic digestibility of algal bioethanol residue, Bioresour. Technol., 113, 78-82 (2012). https://doi.org/10.1016/j.biortech.2011.12.123
  20. A. E.-F. Abomohra, H. Eladel, M. El-Esawi, S. Wang, Q. Wang, and D. Hanelt, Effect of lipid-free microalgal biomass and waste glycerol on growth and lipid production of Scenedesmus obliquus: Innovative waste recycling for extraordinary lipid production, Bioresour. Technol., 249, 992-999 (2018). https://doi.org/10.1016/j.biortech.2017.10.102
  21. A. Guldhe, S. Kumari, L. Ramanna, P. Ramsundar, P. Singh, I. Rawat, and F. Bux, Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation, J. Environ. Manag., 203, 299-315 (2017). https://doi.org/10.1016/j.jenvman.2017.08.012
  22. S. Mishra and K. Mohanty, Comprehensive characterization of microalgal isolates and lipid-extracted biomass as zero-waste bioenergy feedstock: An integrated bioremediation and biorefinery approach, Bioresour. Technol., 273, 177-184 (2019). https://doi.org/10.1016/j.biortech.2018.11.012
  23. E. Sforza, E. Barbera, F. Girotto, R. Cossu, and A. Bertucco, Anaerobic digestion of lipid-extracted microalgae: Enhancing nutrient recovery towards a closed loop recycling, Biochem. Eng. J., 121, 138-146 (2017).
  24. Z. Yang, R. Guo, X. Xu, X. Fan, and X. Li, Enhanced hydrogen production from lipid-extracted microalgal biomass residues through pretreatment, Int. J. Hydrogen Energy, 35, 9618-9623 (2010). https://doi.org/10.1016/j.ijhydene.2010.07.017
  25. A. Ghimire, G. Kumar, P. Sivagurunathan, S. Shobana, G.D. Saratale, H.W. Kim, V. Luongo, G. Esposito, and R. Munoz, Bio-hythane production from microalgae biomass: Key challenges and potential opportunities for algal bio-refineries, Bioresour. Technol., 241, 525-536 (2017). https://doi.org/10.1016/j.biortech.2017.05.156
  26. D.-H. KIm, S. Kang, and Y.-M. Yun, Changes in microbial community associated with dechlorination of leftover chloroform in two-stage anaerobic Co-fermentation (H2+CH4) of lipid extracted microalgae waste with food waste leachate, Int. J. Hydrogen Energy, 44, 2266-2273 (2019). https://doi.org/10.1016/j.ijhydene.2018.06.069
  27. H. H. Bui, K. Q. Tran, and W. H. Chen, Pyrolysis of microalgae residues-a Kinetic study, Bioresour. Technol., 199, 362-366 (2015). https://doi.org/10.1016/j.biortech.2015.08.069
  28. X. Ji, B. Liu, G. Chen, and W. Ma, The pyrolysis of lipid-extracted residue of Tribonema minus in a fixed-bed reactor, J. Anal. Appl. Pyrolysis, 116, 231-236 (2015). https://doi.org/10.1016/j.jaap.2015.09.006
  29. V. Benavente, S. L. F. G. Gentili, and S. Jansson, Influence of lipid extraction and processing conditions on hydrothermal conversion of microalgae feedstocks-Effect on hydrochar composition, secondary char formation and phytotoxicity, Chem. Eng. J., 428, 129559 (2022). https://doi.org/10.1016/j.cej.2021.129559
  30. R. Maurya, C. Paliwal, K. Chokshi, I. Pancha, T. Ghosh, G. G. Satpati, R. Pal, A. Ghosh, and S. Mishra, Hydrolysate of lipid extracted microalgal biomass residue: an algal growth promoter and enhancer, Bioresour. Technol., 207, 197-204 (2016). https://doi.org/10.1016/j.biortech.2016.02.018
  31. B. Zhang and K. Ogden, Nitrogen balances and impacts on the algae cultivation-extraction-digestion-cultivation process, Algal Res. 39, 101434 (2019). https://doi.org/10.1016/j.algal.2019.101434
  32. R. Maurya, C. Paliwal, T. Ghosh, I. Pancha, K. Chokshi, M. Mitra, A. Ghosh, and S. Mishra, Applications of de-oiled microalgal biomass towards development of sustainable biorefinery, Bioresour. Technol., 214, 787-796 (2016). https://doi.org/10.1016/j.biortech.2016.04.115
  33. Y. Tejido-Nunez, E. Aymerich, L. Sancho, and D. Refardt, Treatment of aquaculture effluent with Chlorella vulgaris and Tetradesmus obliquus: The effect of pretreatment on microalgae growth and nutrient removal efficiency, Ecol. Eng., 136, 1-9 (2019). https://doi.org/10.1016/j.ecoleng.2019.05.021
  34. M. M. R. Talukder, P. Das, and J. C. Wu, Microalgae (Nannochloropsis salina) biomass to lactic acid and lipid, Biochem. Eng. J., 68, 109-113 (2012). https://doi.org/10.1016/j.bej.2012.07.001
  35. I. Pancha, K. Chokshi, R. Maurya, S. Bhattacharya, P. Bachani, and S. Mishra, Comparative evaluation of chemical and enzymatic saccharification of mixotrophically grown de-oiled microalgal biomass for reducing sugar production, Bioresour. Technol., 204, 9-16 (2016). https://doi.org/10.1016/j.biortech.2015.12.078
  36. E. P. Knoshaug, A. Mohagheghi, N. J. Nagle, and J. J. Stickel, Demonstration of parallel algal processing: production of renewable diesel blendstock and a high-value chemical intermediate, Green Chem., 20, 457-468 (2018). https://doi.org/10.1039/c7gc02295f
  37. M. Mirsiaghi, Bioconversion of Lipid-extracted Algal Biomass into Ethanol, PhD Dissertation, Colorado State University, USA (2016).
  38. M. E. Alzate, R. Munoz, F. Rogalla, F. Fdz-Polanco, and S. I. Perez-Elvira, Biochemical methane potential of microalgae biomass after lipid extraction, Chem. Eng., J. 243, 405-410 (2014). https://doi.org/10.1016/j.cej.2013.07.076
  39. F. A. Ansari, A. Shriwastav, S. K. Gupta, I. Rawat, A. Guldhe, and F. Bux, Lipid extracted algae as a source for protein and reduced sugar: a step closer to the biorefinery, Bioresour. Technol., 179, 559-564 (2015). https://doi.org/10.1016/j.biortech.2014.12.047
  40. N. Rashid, M. S. U. Rehman, and J. I. Han, Recycling and reuse of spent microalgal biomass for sustainable biofuels, Biochem. Eng. J., 75, 101-107 (2013). https://doi.org/10.1016/j.bej.2013.04.001
  41. M. Rizwan, G. Mujtaba, S. A. Memon, K. Lee, and N. Rashid, Exploring the potential of microalgae for new biotechnology applications and beyond: A review, Renew. Sustain. Energy Rev., 92, 394-404 (2018). https://doi.org/10.1016/j.rser.2018.04.034
  42. R. Praveenkumar, B. Kim, E. Choi, K. Lee, J.-Y. Park, J.-S. Lee, Y.-C. Lee, and Y.-K. Oh, Improved biomass and lipid production in a mixotrophic culture of Chlorella sp. KR-1 with addition of coal-fired flue-gas, Bioresour. Technol., 171, 500-505 (2014). https://doi.org/10.1016/j.biortech.2014.08.112
  43. L. Wang, L. Chen, S. Wu, and J. Ye, Non-airtight fermentation of sugar beet pulp with anaerobically digested dairy manure to provide acid-rich hydrolysate for mixotrophic microalgae cultivation, Bioresour. Technol., 278, 175-179 (2019). https://doi.org/10.1016/j.biortech.2019.01.075
  44. N. M. Dang and K. Lee, Utilization of organic liquid fertilizer in microalgae cultivation for biodiesel production, Biotechnol. Bioprocess Eng., 23, 406-414 (2018).
  45. C. Rosch, J. Skarka, and N. Wegerer, Materials flow modeling of nutrient recycling in biodiesel production from microalgae, Bioresour. Technol., 107, 191-199 (2012). https://doi.org/10.1016/j.biortech.2011.12.016
  46. N. M. Dang and K. Lee, Recent trends of using alternative nutrient sources for microalgae cultivation as a feedstock of biodiesel production, Appl. Chem. Eng., 29, 1-9 (2018). https://doi.org/10.14478/ACE.2018.1002
  47. W. Farooq, W.and I. Suh, M.and S. Park, and J. W. Yang, Water use and its recycling in microalgae cultivation for biofuel application, Bioresour. Technol., 184, 73-81 (2015). https://doi.org/10.1016/j.biortech.2014.10.140
  48. N. M. Dang and K. Lee, Decolorization of organic fertilizer using advanced oxidation process and its application for microalgae cultivation, J. Ind. Eng. Chem., 59, 297-303 (2018). https://doi.org/10.1016/j.jiec.2017.10.035
  49. H. Zheng, Z. Gao, F. Yin, X. Ji, and H. Huang, Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis, Bioresour. Technol,. 117, 1-6 (2012). https://doi.org/10.1016/j.biortech.2012.04.007
  50. H. Zheng, H., Z. Gao, F. Yin, X. Ji, and H. Huang, Effect of CO2 supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues, Bioresour. Technol., 126, 24-30 (2012). https://doi.org/10.1016/j.biortech.2012.09.048
  51. X. Ma, H. Zheng, H. Huang, Y. Liu, and R. Ruan, Effects of temperature and substrate concentration on lipid production by Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues (LMBRs), Appl. Biochem. Biotechnol., 174, 1631-1650 (2014). https://doi.org/10.1007/s12010-014-1134-5
  52. H. Zheng, X. Ma, Z. Gao, Y. Wan, M. Min, W. Zhou, Y. Li, Y. Liu, H. Huang, P. Chen, and R. Ruan, Lipid production of heterotrophic Chlorella sp. from hydrolysate mixtures of lipid-extracted microalgal biomass residues and molasses, Appl. Biochem. Biotechnol., 177 (3), 662-674 (2015). https://doi.org/10.1007/s12010-015-1770-4
  53. M. Moon, C. W. Kim, W. Farooq, W .I. Suh, A. Shrivastav, M. S. Park, S. K. Mishra, and J. W. Yang, Utilization of lipid extracted algal biomass and sugar factory wastewater for algal growth and lipid enhancement of Ettlia sp., Bioresour. Technol., 163, 180-185 (2014). https://doi.org/10.1016/j.biortech.2014.04.033
  54. N. Arora, A. Patel, P. A. Pruthi, and V. Pruthi, Recycled de-oiled algal biomass extract as a feedstock for boosting biodiesel production from Chlorella minutissima, Appl. Biochem. Biotechnol., 180, 1534-1541 (2016). https://doi.org/10.1007/s12010-016-2185-6
  55. J. Lowrey, R. E. Armenta, and M. S. Brooks, Sequential recycling of enzymatic lipid-extracted hydrolysate in fermentations with a thraustochytrid, Bioresour. Technol., 209, 333-342 (2016). https://doi.org/10.1016/j.biortech.2016.03.030
  56. P. Jain, N. Arora, J. Mehtani, V. Pruthi, and C. B. Majumder, Pretreated algal bloom as a substantial nutrient source for microalgae cultivation for biodiesel production, Bioresour. Technol., 242, 152-160 (2017). https://doi.org/10.1016/j.biortech.2017.03.156
  57. O. K. Lee, A. L. Kim, D. H. Seong, C. G. Lee, Y. T. Jung, J. W. Lee, and E. Y. Lee, Chemoenzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga Dunaliella tertiolecta, Bioresour. Technol., 132, 197-201 (2013). https://doi.org/10.1016/j.biortech.2013.01.007
  58. M. Mirsiaghi and K. F. Reardon, Conversion of lipid-extracted Nannochloropsis salina biomass into fermentable sugars, Algal Res., 8, 145-152 (2015). https://doi.org/10.1016/j.algal.2015.01.013
  59. C. Kavitha, V. Ashokkumar, S. Chinnasamy, S. Bhaskar, and R. Rengasamy, Pretreatment of lipid extracted Botryococcus braunii spent biomass for bioethanol production, Int. J. Curr. Biotechnol., 2, 11-18 (2014).
  60. M. T. Gao, T. Shimamura, N. Ishida, and H. Takahashi, Investigation of utilization of the algal biomass residue after oil extraction to lower the total production cost of biodiesel, J. Biosci. Bioeng., 114, 330-333 (2012). https://doi.org/10.1016/j.jbiosc.2012.04.002
  61. Y. H. Seo, M. Sung, and J. I. Han, Recycle of algal residue suspension from acid-catalyzed hot-water extraction (AHE) as substrate of oleaginous yeast Cryptococcus sp., Fuel, 141, 222-225 (2015). https://doi.org/10.1016/j.fuel.2014.10.043
  62. H.-H. Cheng, L.-M. Whang, K.-C. Chan, M.-C. Chung, S,-H. Wu, C.-P. Liu, S.-Y. Tien, S.-Y. Chen, J.-S. Chang, and W.-J. Lee, Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum, Bioresour. Technol., 184, 379-385 (2015). https://doi.org/10.1016/j.biortech.2014.11.017
  63. H. Gu, N. Nagle, P. T. Pienkos, and M. C. Posewitz, Nitrogen recycling from fuel-extracted algal biomass: residuals as the sole nitrogen source for culturing Scenedesmus acutus, Bioresour. Technol., 184, 153-160 (2015). https://doi.org/10.1016/j.biortech.2014.11.095
  64. J. Park, H. F. Jin, B. R. Lim, K. Y. Park, and K. Lee, Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp., Bioresour. Technol., 101, 8649-8657 (2010). https://doi.org/10.1016/j.biortech.2010.06.142
  65. L. Yang, X. Tan, B. Si, F. Zhao, H. Chu, X. Zhou, and Y. Zhang, Nutrients recycling and energy evaluation in a closed microalgal biofuel production system, Algal Res., 33, 399-405 (2018). https://doi.org/10.1016/j.algal.2018.06.009
  66. P. Bohutskyi, B. Ketter, S. Chow, K. J. Adams, M. J. Betenbaugh, F. T. Allnutt, and E. J. Bouwer, Anaerobic digestion of lipid-extracted Auxenochlorella protothecoides biomass for methane generation and nutrient recovery, Bioresour. Technol., 183, 229-239 (2015). https://doi.org/10.1016/j.biortech.2015.02.012
  67. R. Maurya, K. Chokshi, T. Ghosh, K. Trivedi, I. Pancha, D. Kubavat, S. Mishra, and A. Ghosh, Lipid extracted microalgal biomass residue as a fertilizer substitute for Zea mays L, Front. Plant Sci., 6, 1266 (2016).
  68. M. Grzesik, Z. Romanowska-Duda, and H. M. Kalaji, Effectiveness of cyanobacteria and green algae in enhancing the photosynthetic performance and growth of willow (Salix viminalis L.) plants under limited synthetic fertilizers application, Photosynthetica, 55, 510-521 (2017). https://doi.org/10.1007/s11099-017-0716-1
  69. J. M. Juarez, E. R. Pastor, J. M. F. Sevilla, R. M. Torre, P. A. Garcia-Encina, and S .B. Rodriguez, Effect of pretreatments on biogas production from microalgae biomass grown in pig manure treatment plants, Bioresour. Technol., 257, 30-38 (2018). https://doi.org/10.1016/j.biortech.2018.02.063
  70. H. L. Bryant, I. Gogichaishvili, D. Anderson, J. W. Richardson, J. Sawyer, T. Wickersham, and M. L. Drewery, The value of post-extracted algae residue. Algal Res., 1, 185-193 (2012). https://doi.org/10.1016/j.algal.2012.06.001
  71. S. Gupta, S. Gupta, Mansha, and S. Sharma, Management of barren land soil using waste algal residue and agricultural residue, J. Algal Biomass Util. 3, 1-6 (2012).
  72. K. L. Rothlisberger-Lewis, J. L. Foster, and F. M. Hons, Soil carbon and nitrogen dynamics as affected by lipid-extracted algae application, Geoderma, 262, 140-146 (2016). https://doi.org/10.1016/j.geoderma.2015.08.018
  73. E. Barbera, E. Sforza, S. Kumar, T. Morosinotto, A. Bertucco, Cultivation of Scenedesmus obliquus in liquid hydrolysate from flash hydrolysis for nutrient recycling, Bioresour. Technol., 207, 59-66 (2016). https://doi.org/10.1016/j.biortech.2016.01.103
  74. E. Barbera, E. Sforza, V. Musolino, S. Kumar, and A. Bertucco, Nutrient recycling in large-scale microalgal production: Mass and energy analysis of two recovery strategies by process simulation, Chem. Eng. Res. Des., 132, 785-794 (2018). https://doi.org/10.1016/j.cherd.2018.02.028
  75. E.A. Johnson, Z. Liu, E. Salmon, and P. Hatcher, One-step conversion of algal biomass to biodiesel with formation of an algal char as potential fertilizer. In: J. W. Lee (Ed.), Advanced Biofuels and Bioproducts, pp. 695-705, Springer, New York (2013).
  76. K. Wang, R. C. Brown, S. Homsy, L. Martinez, and S. S. Sidhu, Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production, Bioresour. Technol., 127, 494- 499 (2013). https://doi.org/10.1016/j.biortech.2012.08.016
  77. Y. M. Chang, W. T. Tsai, and M. H. Li, Characterization of activated carbon prepared from Chlorella-based algal residue, Bioresour. Technol., 184, 344-348 (2015). https://doi.org/10.1016/j.biortech.2014.09.131
  78. Y. M. Chang, W. T. Tsai, M. H. Li, Chemical characterization of char derived from slow pyrolysis of microalgal residue, J. Anal. Appl. Pyrolysis, 111, 88-93 (2015). https://doi.org/10.1016/j.jaap.2014.12.004
  79. M. Francavilla, P. Kamaterou, S. Intini, M. Monteleone, and A. Zabaniotou, Cascading microalgae biorefinery: Fast pyrolysis of Dunaliella tertiolecta lipid extracted-residue, Algal Res., 11, 184-193 (2015). https://doi.org/10.1016/j.algal.2015.06.017
  80. D. Chiaramonti, M. Prussi, M. Buffi, A. M. Rizzo, and L. Pari, Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production, Appl. Energy, 185, 963-972 (2017). https://doi.org/10.1016/j.apenergy.2015.12.001