DOI QR코드

DOI QR Code

Effect of Protein Fractionation and Buffer Solubility of Forage Sources on In Vitro Fermentation Characteristics, Degradability and Gas Production

조사료 자원의 단백질 분획 및 Buffer 추출이 In Vitro 발효 성상, 분해율 및 Gas 생성량에 미치는 효과

  • Jin, Guang Lin (Department of Animal Science, Chungbuk National University) ;
  • Shinekhuu, Judder (Department of Animal Science, Chungbuk National University) ;
  • Qin, Wei-Ze (Department of Animal Science, Chungbuk National University) ;
  • Kim, Jong-Kyu (Department of Animal Science, Chungbuk National University) ;
  • Ju, Jong-Kwan (Department of Animal Science, Chungbuk National University) ;
  • Suh, Seong-Won (Department of Animal Biosystem Science, Chungnam National University) ;
  • Song, Man-Kang (Department of Animal Science, Chungbuk National University)
  • 김광림 (충북대학교 농업생명환경대학 축산학과) ;
  • ;
  • ;
  • 김종규 (충북대학교 농업생명환경대학 축산학과) ;
  • 주종관 (충북대학교 농업생명환경대학 축산학과) ;
  • 서성원 (충남대학교 동물바이오시스템과학과) ;
  • 송만강 (충북대학교 농업생명환경대학 축산학과)
  • Received : 2012.02.01
  • Accepted : 2012.03.12
  • Published : 2012.03.31

Abstract

Buffer solubility and protein fractionation were evaluated from the hays (timothy, alfalfa and klein) and straws (tall fescue and rice), and $In$ $vitro$ trial was conducted to examine the effect of buffer extraction on fermentation characteristics, degradability and gas ($CO_2$ and $CH_4$) production. Buffer soluble protein (SP) content and A fraction in total protein were highest in alfalfa hay as 61% and 41.77%, respectively while lowest in rice straw (42.8% and 19.78%, respectively). No difference was observed in B1 fraction among forages but B2 fraction was slightly increased in klein hay (12.34%) and tall fescue straw (10.05%) compared with other forages (6.34~8.85%). B3 fraction of tall fescue was highest as 38.49% without difference among other forages while C fraction was highest in rice straw. pH in incubation solution was higher in all forages after extraction than before extraction at 3h (P<0.01) and 6h (P<0.05), and pH from hays of timothy and alfalfa was higher than the other forages at 6h (P<0.05) and 12h (P<0.001). Regardless of extraction, ammonia-N concentration from alfalfa hay was increased at all incubation times and extraction effect was appeared only at 3h incubation time (P<0.01). Total VFA concentration from alfalfa hay was highest up to 24h incubation while those from tall fescue straw and rice straw were lowest. Buffer extraction decreased (P<0.01~P<0.001) the total VFA concentration. Acetic acid proportion was increased (P<0.001) before extraction of forages but no difference was found between forages. Propionic acid($C_3$) proportion was also increased(P<0.001) before extraction in all forages than in straws at 3h, 24h and 48h incubations, and $C_3$ from hays were mostly higher (P<0.05) than from straws. Butyric acid proportion, however, was not affected by extraction at most incubation times. Parameter 'a' regarding to the dry matter (DM) degradation was increase (P<0.001) in all forages before extraction, and was decreased (P<0.05) in tall fescue straw and rice straw compared with hays. Parameter 'b' was also increased (P<0.001) before extraction but no difference was found between forages. Effective degradability of DM (EDDM) was higher (P<0.001) before extraction in most forages except for rice straw. Buffer extraction decreased (P<0.05) all parameters (a, b, and c) regrading to the crude protein (CP) degradation but no difference was found between forages. Effective degradation of CP (EDCP) was lower (P<0.05) in straws than in hays. Parameters 'a' and 'b' regarding to the NDF degradation (P<0.01) and effective degradability of NDF (EDNDF, P<0.001) were also higher in forages before extraction than after extraction but no difference was found between forages. Buffer extraction reduced (P<0.05~P<0.001) $CO_2$ production from all the forages uo to 24h incubation and its production was greater (P<0.05~P<0.01) from hays than straws. Methane ($CH_4$) production was also greater (P<0.01~P<0.001) in all forages at all incubation times, and its production was greater (P<0.05) from hays than from straws at most incubation times. Based on the results of the current study, it can be concluded that buffer solubility and CP fractionation might be closely related with $In$ $vitro$ VFA concentration, degradability and gas ($CO_2$ and $CH_4$) production. Thus, measurement of buffer solubility and protein fractionation of forages might be useful to improve TMR availability in the ruminants.

본 시험에서 건초(티머시, 알팔파 및 클라인)와 짚류(톨페스큐 및 볏짚)의 buffer 용해도와 단백질 분획이 실시되었으며, 조사료 자원의 buffer 추출이 $In$ $vitro$ 발효 성상, 분해율 및 가스($CO_2$$CH_4$) 생성량에 미치는 효과를 조사하였다. 다른 조사료에 비해 총 단백질 중 buffer 가용성 조단백질과 A fraction은 알팔파 건초에서 각각 61% 및 41.77%로 가장 높았으며 볏짚에서 가장 낮았다(각각 42.8% 및 19.78%). 총단백질 중 B1 fraction은 조사된 조사료간 비교적 큰 차이를 보이지 않았으나 B2 fraction에서는 다른 조사료(6.34~8.85%)에 비하여 톨페스큐짚(10.05%) 및 클라인 건초(12.34)%에서 다소 높은 수준을 보였다. 총 단백질 중 B3 fraction이 차지하는 비율은 톨페스큐짚에서 38.49%로 가장 높았으나 다른 조사료 자원 간에는 큰 차이가 없었으며, C fraction의 경우 볏짚에서 가장 높은 비율(15.05%)을 보였다. 모든 사료에서 배양 개시 후 3시간(P<0.01) 및 6시간(P<0.05)에서 buffer 추출 전에 비해 추출 후 배양액의 pH가 증가되었으며, 배양 6시간(P<0.05) 및 12시간(P<0.001)에서 다른 사료에 비해 티모시 건초 및 알팔파 건초로부터의 pH가 낮았다. 배양액의 암모니아 농도는 모든 배양시간에서 가용성 물질의 추출 전 후에 다른조사료에 비해 알팔파 건초에서 가장 높았으나 모든 사료의 추출효과는 배양 3시간(P<0.01)에서만 나타났다. 배양액의 총 VFA 농도는 배양 24시간까지 알팔파 건초에서 가장 높았던 반면 톨페스큐짚과 볏짚에서 가장 낮았다. 또한 모든 조사료에서 buffer 추출 전에 비하여 추출후에 총 VFA 농도가 감소되었다(P<0.01~P<0.001). Acetic acid ($C_2$)의 조성 비율에서는 배양 6시간까지 추출 전에 더 높았으나(P<0.001) 사료 간 차이는 없었다. Propionic acid ($C_3$) 조성 비율 역시 배양 개시 후 3, 24 및 48시간(P<0.001)에서 추출 전에 더 높았으며, 6 및 12 시간의 배양액에서 대부분 건초(티모시, 알팔파 및 클라인)와 짚류(톨페스큐짚 및 볏짚) 간 차이가 있는 것으로 조사되었다(P<0.05). 그러나 butyric acid ($C_4$) 조성비율의 경우 대부분의 배양시간에서 사료 간 차이는 없었다. 건물에서의 분해율 관련 parameter 중 a 값은 조사된 전체 조사료에서 buffer 추출 전이 추출 후에 비해서 높았으며(P<0.001), 다른 조사료에 비해 톨페스큐짚과 볏짚에서 크게 낮았다(P<0.05). 또한 b 값의 경우 역시 추출 전에 비해 추출 후에서 현저히 낮았으나(P<0.001) 사료 간 차이는 없었다. 볏짚을 제외한 조사료에서 추출 후에 비해 추출 전의 건물 유효분해율(EDDM)이 더 높았다(P<0.001). 조단백질에서의 a, b 및 c 값은 추출 전에 비해 추출 후에서 현저히 낮았으나(P<0.05) 사료 간 차이는 없었다. 조단백질 유효분해율(EDCP)에서는 다른 조사료 종류에 비해 톨페스큐짚과 볏짚에서 낮았다(P<0.05). 한편, NDF의 경우 a 값과 b 값(P<0.01) 및 NDF 유효분해율(EDNDF, P<0.001)은 추출 후에 비해 추출 전에 더 높았으나(P<0.01) 사료 간 차이는 보이지 않았다. 반추위미생물에 의해 사료분해과정 중 생성되는 $CO_2$ 량도 24시간 배양까지는 추출 전에 더 많았으며(P<0.05~P<0.001), 톨페스큐짚과 볏짚에 비해 건초 형태의 조사료로부터의 $CO_2$ 생성량이 더 많았다(P<0.05~P<0.01). 메탄가스($CH_4$) 생성량 역시 모든 배양시간에서 추출 전에 비해 추출 후에 크게 감소되었으며(P<0.01~P<0.001), 12~24시간을 제외하고는 짚류에 비해 건초에서 현저히 높은(P<0.05) 것으로 나타났다. 본 시험의 결과를 종합하면, 조사료 자원에 대한 buffer 용해도와 단백질의 분획이 $In$ $vitro$ VFA 농도와 분해율 및 gas ($CO_2$$CH_4$) 발생량 간 상호 밀접한 관계를 보이는 것으로 여겨진다. 이에 따라 조사료 이용 효율 개선을 위해 조사료자원에 대한 buffer 용해도와 단백질 분획을 반추동물 TMR 조제에 활용할 필요가 있는 것으로 여겨진다.

References

  1. AOAC. 1991. Official Methods of Analysis (15th ed.). Association of Official Analycal Chemists, Washington, D.C.
  2. Bauchop, T. 1979. Rumen anaerobic fungi of cattle and sheep. Appl. Environ. Microbiol. 38: 148-159.
  3. Cho, Y.M., E.G. Kwan, S.S. Chang, T.I. Kim, B.K. Park, S.W. Kang and B.H. Baek. 2008. Effects of total mixed ration on growth performance and carcass characteristics of Hanwoo steers. Kor. J. Anim. Sci. and Tech. 50:363-372. https://doi.org/10.5187/JAST.2008.50.3.363
  4. Citron, A., A. Breton and G. Fonty. 1987. Rumen anaerobic fungi. Bull. Inst. Pasteur. 85:329-346.
  5. Coleman, G.S. 1980. Rumen ciliate protozoa. Adv. Paracitol. 18:121-134. https://doi.org/10.1016/S0065-308X(08)60399-1
  6. Duncan, D. B. 1955. Multiple range and multiple F tests. Biometrics. 11:1-42. https://doi.org/10.2307/3001478
  7. Fawcett, J. K. and Scott, J. E. 1960. A rapid and precise method for the determination of urea. J. Clin. Pathol. 13:156-163. https://doi.org/10.1136/jcp.13.2.156
  8. Fox, D.G., C.J. Sniffen, J.D. O'Connor, J.B. Russell and P.J. Van Soest. 1992. A net carbohydrate and protein system for evaluating cattle diets: III. Cattle requirements and diet adequacy. J. Anim. Sci. 70:3578-3596.
  9. Han, I.K. and Garrett, W.N. 1986. Improving the dry matter digestibility and voluntary intake of low quality by various treatment : A review. Kor. J. Anim. Sci. 28:199-213.
  10. Han, I.K., I.K. Baik, Y.J. Choi, B.K. Kim and S.W. Seo. 2011. Feed Resources Handbook. SNU Publishing Co.
  11. Hungate, R.E. 1966. The Rumen and It's Microbes. Academic Press. New York.
  12. Ji, B.J., K.L. Jin, S. Judder, Wei-ze Qin, Y.K. Oh, Y.S. Sohn, S. Seo and M.K. Song. 2010. Estimation of availability and TDN of various silages by cattle. Kor. Grassl. Sci. 30:169-178. https://doi.org/10.5333/KGFS.2010.30.2.169
  13. Jugdder, S., K.L. Jin, B.J. Ji, X. Li., Y.K. Oh, S.K. Hong, M.K. Song. 2009b. Protein fractionion of whole crop silages, and effect of borate-phosphate buffer extraction on in vitro fermentation characteristics, gas production and degradation. Kor. J. Anim. Sci. and Tech. 51: 69-378. https://doi.org/10.5187/JAST.2009.51.1.069
  14. Kim, W.H., S. Seo, S.H. Yoon, K.Y. Kim. Y.M. Cho, T.I. Park, J.M. Koh and G.J. Park. 2003. Selection of promising barley cultivar for silage. 2. Nutrient value and total digestible nutrient yield. Kor. Grassl. Sci. 23:283-288. https://doi.org/10.5333/KGFS.2003.23.4.283
  15. Lee, S.C. 2000. Effects of chemical treatments and ensiling on the chemical composition and degradation rate in the rumen. Kor. Grassl. Sci. 20:177-184.
  16. Lee, I.D. and H.S. Lee. 2006. A comparative study on the dry matter yield and nutritive value from rye and hairy vetch seeding types in Daejon area. Kor. Grassl. Sci. 26:249-256. https://doi.org/10.5333/KGFS.2006.26.4.249
  17. Licitra, G., Hernandez, T.M. and Van soest, P.J. 1996. standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 57:347-358. https://doi.org/10.1016/0377-8401(95)00837-3
  18. McDougall, E.I. 1948. Studies on ruminant saliva. I. The composition and output of sheep's saliva. Biochem. J. 43:99-109.
  19. Nocek, J. and J.B. ussell. 1988. Protein and carbohydrate as an integrated system. Relationship of ruminal availability to microbial contribution and milk production. J. Daity Sci. 71:2071-2079.
  20. NRC. 2001. Nutrient Requirements of Dairy Cattle. National Academy Press. Washington, DC.
  21. Park, H.S., K.J. Whang, N.G. Park, G.J. Choi, J.K. Lee, D.W. Cheon and M.S. Ko. 2008. Comparison of forage production and feed value of winter forage crops in Jeju. Kor. Grassl. Sci. 28:215-220. https://doi.org/10.5333/KGFS.2008.28.3.215
  22. Qin, Wei-ze, K.L. Jin, J.K. Kim, Y.K. Oh, S.C. Lee, M.K. Song. 2010. Estimation of availability of whole crop barley and rye silage TMR in the cattle. Kor. Grassl. Sci. 30: 343-354. https://doi.org/10.5333/KGFS.2010.30.4.343
  23. Orskov, E.R. and McDonald, I. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. (Camb.) 92: 99-506.
  24. Russell, R.J., J.D. O'Connor, D.G. Fox, P.J. Van Soest and C.J. Sniffen. A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. J. Anim. Sci. 70:3551- 3561.
  25. SAS. 2002. SAS Procedures Guide release 9.0 SAS institute Inc., Cary, NC. U.S.
  26. Seo, I.J., M.H. Kim, D.S. Kim, S.R. Lee and W.J. Maeng. 2005. Effect of fiber sources on ruminal pH, buffering capacity and digestibility in sheep. Kor. Grassl. Sci. 25:177-184. https://doi.org/10.5333/KGFS.2005.25.3.177
  27. Sniffen, C.J., J.D. O'Connor, P.J. Van Soest, D.G. Fox and J.B. Russell. 1992. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 70:3562-3577.
  28. Van Soest, P.J., Robertson, J.B. and Lewis, B.A. 1991. Methods for fiber, neutral detergent fiber, and non starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  29. Waldo, D.R. and L.W. Smith. 1972. Model of cellulose disappearance from the rumen. J. Dairy Sci. 55:472-480.
  30. Yoon, S.K. and A. Kazuo, A. 2000. Effects of maturing stages on chemical composition for feed and in vitro dry matter digestibility of triticale. Kor. Grassl. Sci. 20:227-232.

Cited by

  1. Effect of Defaunation on In Vitro Fermentation Characteristics and Methane Emission When Incubated with Forages vol.33, pp.3, 2013, https://doi.org/10.5333/KGFS.2013.33.3.197
  2. Effects of Defaunation on Fermentation Characteristics, Degradation of Ryegrass Hay and Methane Production by Rumen Microbes In Vitro When Incubated with Plant Oils vol.34, pp.3, 2014, https://doi.org/10.5333/KGFS.2014.34.3.193
  3. Nutrient composition and in vitro fermentability of corn grain and stover harvested at different periods in Goesan, a mountainous area vol.61, pp.1, 2019, https://doi.org/10.5187/jast.2019.61.1.18