• Title/Summary/Keyword: ${\eta}_*$ Einstein manifolds

Search Result 37, Processing Time 0.025 seconds

Some Symmetric Properties on (LCS)n-manifolds

  • Venkatesha, Venkatesha;Naveen Kumar, Rahuthanahalli Thimmegowda
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.1
    • /
    • pp.149-156
    • /
    • 2015
  • We analyze the $(LCS)_n$-manifolds endowed with some symmetric properties, focusing on Ricci tensor and the 1-form ${\gamma}$. We study some properties of special Weakly Ricci-Symmetric $(LCS)_n$-manifolds and also shown that Weakly ${\phi}$-Ricci Symmetric $(LCS)_n$-manifold is an ${\eta}$-Einstein manifold.

SOME RECURRENT PROPERTIES OF LP-SASAKIAN NANIFOLDS

  • Venkatesha, Venkatesha;Somashekhara., P.
    • Korean Journal of Mathematics
    • /
    • v.27 no.3
    • /
    • pp.793-801
    • /
    • 2019
  • The aim of the present paper is to study certain recurrent properties of LP-Sasakian manifolds. Here we first describe Ricci ${\eta}$-recurrent LP-Sasakian manifolds. Further we study semi-generalized recurrent and three dimensional locally generalized concircularly ${\phi}$-recurrent LP-Sasakian manifolds and got interesting results.

ON Φ-RECURRENT (k, μ)-CONTACT METRIC MANIFOLDS

  • Jun, Jae-Bok;Yildiz, Ahmet;De, Uday Chand
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.689-700
    • /
    • 2008
  • In this paper we prove that a $\phi$-recurrent (k, $\mu$)-contact metric manifold is an $\eta$-Einstein manifold with constant coefficients. Next, we prove that a three-dimensional locally $\phi$-recurrent (k, $\mu$)-contact metric manifold is the space of constant curvature. The existence of $\phi$-recurrent (k, $\mu$)-manifold is proved by a non-trivial example.

𝜂-RICCI SOLITONS ON PARA-KENMOTSU MANIFOLDS WITH SOME CURVATURE CONDITIONS

  • Mondal, Ashis
    • Korean Journal of Mathematics
    • /
    • v.29 no.4
    • /
    • pp.705-714
    • /
    • 2021
  • In the present paper, we study 𝜂-Ricci solitons on para-Kenmotsu manifolds with Codazzi type of the Ricci tensor. We study 𝜂-Ricci solitons on para-Kenmotsu manifolds with cyclic parallel Ricci tensor. We also study 𝜂-Ricci solitons on 𝜑-conformally semi-symmetric, 𝜑-Ricci symmetric and conformally Ricci semi-symmetric para-Kenmotsu manifolds. Finally, we construct an example of a three-dimensional para-Kenmotsu manifold which admits 𝜂-Ricci solitons.

A Class of Lorentzian α-Sasakian Manifolds

  • Yildiz, Ahmet;Turan, Mine;Murathan, Cengizhan
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.4
    • /
    • pp.789-799
    • /
    • 2009
  • In this study we consider ${\varphi}$-conformally flat, ${\varphi}$-conharmonically flat, ${\varphi}$-projectively at and ${\varphi}$-concircularly flat Lorentzian ${\alpha}$-Sasakian manifolds. In all cases, we get the manifold will be an ${\eta}$-Einstein manifold.

ON (ϵ)-LORENTZIAN PARA-SASAKIAN MANIFOLDS

  • Prasad, Rajendra;Srivastava, Vibha
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.297-306
    • /
    • 2012
  • In this paper we study (${\epsilon}$)-Lorentzian para-Sasakian manifolds and show its existence by an example. Some basic results regarding such manifolds have been deduced. Finally, we study conformally flat and Weyl-semisymmetric (${\epsilon}$)-Lorentzian para-Sasakian manifolds.

STUDY OF GRADIENT SOLITONS IN THREE DIMENSIONAL RIEMANNIAN MANIFOLDS

  • Biswas, Gour Gopal;De, Uday Chand
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.825-837
    • /
    • 2022
  • We characterize a three-dimensional Riemannian manifold endowed with a type of semi-symmetric metric P-connection. At first, it is proven that if the metric of such a manifold is a gradient m-quasi-Einstein metric, then either the gradient of the potential function 𝜓 is collinear with the vector field P or, λ = -(m + 2) and the manifold is of constant sectional curvature -1, provided P𝜓 ≠ m. Next, it is shown that if the metric of the manifold under consideration is a gradient 𝜌-Einstein soliton, then the gradient of the potential function is collinear with the vector field P. Also, we prove that if the metric of a 3-dimensional manifold with semi-symmetric metric P-connection is a gradient 𝜔-Ricci soliton, then the manifold is of constant sectional curvature -1 and λ + 𝜇 = -2. Finally, we consider an example to verify our results.