DOI QR코드

DOI QR Code

SOME RECURRENT PROPERTIES OF LP-SASAKIAN NANIFOLDS

  • Venkatesha, Venkatesha (Department of Mathematics Kuvempu University) ;
  • Somashekhara., P. (Department of Mathematics Kuvempu University)
  • Received : 2019.02.26
  • Accepted : 2019.09.10
  • Published : 2019.09.30

Abstract

The aim of the present paper is to study certain recurrent properties of LP-Sasakian manifolds. Here we first describe Ricci ${\eta}$-recurrent LP-Sasakian manifolds. Further we study semi-generalized recurrent and three dimensional locally generalized concircularly ${\phi}$-recurrent LP-Sasakian manifolds and got interesting results.

Keywords

References

  1. C. S. Bagewadi, Venkatesha and N. S. Basavarajappa, On LP-Sasakian manifolds, Sci. Scr. A: Math. Sci. 16 (2008), 1-8.
  2. U. C. De and N. Guha, On generalized recurrent manifolds, J. Nat. Acad. Math. 9 (1991), 85-92.
  3. U. C. De, K. Matsumoto and A. A. Shaikh, On Lorentzian Para-Sasakian manifolds, Rendicontidel Seminaro Matemetico di Messina, Serien II, Supplemento al. 3 (1999), 149-156.
  4. S. Kobayashi and K. Nomizu, Foundations of differential geometry, Interscience Publishers, 1 (1963), 293-301.
  5. K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci. 12 (1989), 151-156.
  6. I. Mihai, U. C. De and A. A. Shaikh, On Lorentzian Para-Sasakian manifolds, Korean J. Math. Sci. 6 (1999), 1-13. https://doi.org/10.1007/BF02941903
  7. I. Mihai and R. Rosca, On Lorentzian Para-Sasakian manifolds, Classical Analysis, World Scientific Publ., Singapore, (1992), 155-169.
  8. C. Murathan, A. Yildiz, K. Arsian and U. C. De, On a class of Lorentzian Para-Sasakian manifolds, Proc. Estonian Acad. Sci.Phys. Math. 55 (4) (2006), 210-219.
  9. B. Prasad, On semi-generalized recurrent manifold, Mathematica Balkanica, New series 14 (2000), 72-82.
  10. H. S. Ruse, A classification of $K^4$ space, London Mathematica Balkanical Society 53 (1951), 212-229. https://doi.org/10.1112/plms/s2-53.3.212
  11. A. A. Shaikh and K. K. Baisha, Some results on LP-Sasakian manifolds, Bull. Math. Soc. Sci. Math., Roumanic Tome 49 (2) (2006), 193-205.
  12. V. Venkatesha, H.A. Kumara, D.M. Naik, On a class of generalized $\varphi$-recurrent Sasakian manifold, J. Egypt. Math. Soc. 27 (19) (2019), https://doi.org/10.1186/s42787-019-0022-0.
  13. A. G. Walker, On Ruses spaces of recurrent curvature, Proc. London Math. Soc. 52 (1976), 36-64.
  14. K. Yano and M. Kon, Structures of manifolds, World Scientific Publishing, Singapore 1984.