DOI QR코드

DOI QR Code

A NOTE ON DERIVATIONS OF ORDERED 𝚪-SEMIRINGS

  • Kim, Kyung Ho (Department of Mathematics Korea National University of Transportation)
  • Received : 2019.07.16
  • Accepted : 2019.08.06
  • Published : 2019.09.30

Abstract

In this paper, we consider derivation of an ordered ${\Gamma}$-semiring and introduce the notion of reverse derivation on ordered ${\Gamma}$-semiring. Also, we obtain some interesting related properties. Let I be a nonzero ideal of prime ordered ${\Gamma}$-semiring M and let d be a nonzero derivation of M. If ${\Gamma}$-semiring M is negatively ordered, then d is nonzero on I.

Keywords

References

  1. M. Bresar and J. Vuckman, On the left derivations and related mappings, Proc. Math Soc 10 (1990), 7-16
  2. K. H. Kim On right derivations of incline algebras, J. Chungcheong Math Soc 26 (2013), 683-690. https://doi.org/10.14403/jcms.2013.26.4.683
  3. K. H. Kim, On generalized right derivations of incline algebras, Gulf J. Math 3 (2015), 127-132.
  4. M. Murali Krishna Rao, $\Gamma$-semiring-I, Southeast Asian Bull Math 19 (1995), 45-54.
  5. M. Murali Krishna Rao, $\Gamma$-semiring-II, Southeast Asian Bull Math 21 (1997), 45-54.
  6. M. Murali Krishna Rao, Right derivation of ordered $\Gamma$-semirings, Dicussiones Mathematicea, General Algebra and Application 36 (2016), 209-221.
  7. N. Nobusawa, On generalization of the ring theory, Osaka J. Math 1 (1964), 81-89.
  8. E. C. Posner, Derivations in prime rings, Proc. Math Soc 8 (1957), 1093-1100. https://doi.org/10.1090/S0002-9939-1957-0095863-0
  9. M. K. Sen, On $\Gamma$-semigroup, Proc. of International Conference of algebraic its Applications, Decker Publication (Ed(s)), New York, 1981, 301-308.
  10. H. S. Vandiver, Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Amer. Math 40 (1934), 14-21.