• Title/Summary/Keyword: ${\Psi}$-function

Search Result 174, Processing Time 0.023 seconds

A FAMILY OF FUNCTIONS ASSOCIATED WITH THREE TERM RELATIONS AND EISENSTEIN SERIES

  • Aygunes, Aykut Ahmet
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1671-1683
    • /
    • 2016
  • Abstract. In this paper, for $a{\in}C$, we investigate functions $g_a$ and ${\psi}_a$ associated with three term relations. $g_a$ is defined by means of function ${\psi}_a$. By using these functions, we obtain some functional equations related to the Eisenstein series and the Riemann zeta function. Also we find a generalized difference formula of function $g_a$.

NORMAL, COHYPONORMAL AND NORMALOID WEIGHTED COMPOSITION OPERATORS ON THE HARDY AND WEIGHTED BERGMAN SPACES

  • Fatehi, Mahsa;Shaabani, Mahmood Haji
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.599-612
    • /
    • 2017
  • If ${\psi}$ is analytic on the open unit disk $\mathbb{D}$ and ${\varphi}$ is an analytic self-map of $\mathbb{D}$, the weighted composition operator $C_{{\psi},{\varphi}}$ is defined by $C_{{\psi},{\varphi}}f(z)={\psi}(z)f({\varphi}(z))$, when f is analytic on $\mathbb{D}$. In this paper, we study normal, cohyponormal, hyponormal and normaloid weighted composition operators on the Hardy and weighted Bergman spaces. First, for some weighted Hardy spaces $H^2({\beta})$, we prove that if $C_{{\psi},{\varphi}}$ is cohyponormal on $H^2({\beta})$, then ${\psi}$ never vanishes on $\mathbb{D}$ and ${\varphi}$ is univalent, when ${\psi}{\not\equiv}0$ and ${\varphi}$ is not a constant function. Moreover, for ${\psi}=K_a$, where |a| < 1, we investigate normal, cohyponormal and hyponormal weighted composition operators $C_{{\psi},{\varphi}}$. After that, for ${\varphi}$ which is a hyperbolic or parabolic automorphism, we characterize all normal weighted composition operators $C_{{\psi},{\varphi}}$, when ${\psi}{\not\equiv}0$ and ${\psi}$ is analytic on $\bar{\mathbb{D}}$. Finally, we find all normal weighted composition operators which are bounded below.

Notes on the Ratio and the Right-Tail Probability in a Log-Laplace Distribution

  • Woo, Jung-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.4
    • /
    • pp.1171-1177
    • /
    • 2007
  • We consider estimation of the right-tail probability in a log-Laplace random variable, As we derive the density of ratio of two independent log-Laplace random variables, the k-th moment of the ratio is represented by a special mathematical function. and hence variance of the ratio can be represented by a psi-function.

  • PDF

A SHARP BOUND FOR ITO PROCESSES

  • Choi, Chang-Sun
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.713-725
    • /
    • 1998
  • Let X and Y be Ito processes with dX$_{s}$ = $\phi$$_{s}$dB$_{s}$$\psi$$_{s}$ds and dY$_{s}$ = (equation omitted)dB$_{s}$ + ξ$_{s}$ds. Burkholder obtained a sharp bound on the distribution of the maximal function of Y under the assumption that │Y$_{0}$$\leq$│X$_{0}$│,│ζ│$\leq$$\phi$│, │ξ│$\leq$$\psi$│ and that X is a nonnegative local submartingale. In this paper we consider a wider class of Ito processes, replace the assumption │ξ│$\leq$$\psi$│ by a more general one │ξ│$\leq$$\alpha$$\psi$│ , where a $\geq$ 0 is a constant, and get a weak-type inequality between X and the maximal function of Y. This inequality, being sharp for all a $\geq$ 0, extends the work by Burkholder.der.urkholder.der.

  • PDF

(${\tilde{\varphi}}$, ${\tilde{\psi}}$)-AMENABILITY OF L1(G)

  • Ghorbani, Zahra
    • Honam Mathematical Journal
    • /
    • v.41 no.3
    • /
    • pp.559-568
    • /
    • 2019
  • In this paper we introduce and study the concept of of (${\varphi}$, ${\psi}$)-am-enability of a locally compact group G, where ${\varphi}$ is a continuous homomorphism on G and ${\psi}:G{\rightarrow}{\mathbb{C}}$ multiplicative linear function. We prove that if the group algebra $L^1$ (G) is (${\tilde{\varphi}}$, ${\tilde{\psi}}$)-amenable then G is (${\varphi}$, ${\psi}$)-amenable, where ${\tilde{\varphi}}$ is the extension of ${\varphi}$ to M(G). In the case where ${\varphi}$ is an isomorphism on G it is shown that the converse is also valid.

APPLICATION OF A CERTAIN FAMILY OF HYPERGEOMETRIC SUMMATION FORMULAS ASSOCIATED WITH PSI AND ZETA FUNCTIONS

  • Choi, June-Sang;H.M.Srivastava;Kim, Yong-Sup
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.2
    • /
    • pp.319-332
    • /
    • 2001
  • The main object of this paper is first to give tow contiguous analogues of a well-known hypergeometric summation formula for $_2$F$_1$(1/2). We then apply each of these analogues with a view to evaluating the sums of several classes of series in terms of Psi(or Digamma) and the Zeta functions. Relevant connections of the series identities presented here with those given elsewhere are also pointed out.

  • PDF

CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X5

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Honam Mathematical Journal
    • /
    • v.32 no.3
    • /
    • pp.389-397
    • /
    • 2010
  • Exton introduced 20 distinct triple hypergeometric functions whose names are Xi (i = 1,$\ldots$, 20) to investigate their twenty Laplace integral representations whose kernels include the confluent hypergeometric functions $_0F_1$, $_1F_1$, a Humbert function $\Psi_2$, a Humbert function $\Phi_2$. The object of this paper is to present 25 (presumably new) integral representations of Euler types for the Exton hypergeometric function $X_5$ among his twenty $X_i$ (i = 1,$\ldots$, 20), whose kernels include the Exton function X5 itself, the Exton function $X_6$, the Horn's functions $H_3$ and $H_4$, and the hypergeometric function F = $_2F_1$.

CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION $X_2$

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • The Pure and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.347-354
    • /
    • 2010
  • Exton [Hypergeometric functions of three variables, J. Indian Acad. Math. 4 (1982), 113~119] introduced 20 distinct triple hypergeometric functions whose names are $X_i$ (i = 1, ..., 20) to investigate their twenty Laplace integral representations whose kernels include the confluent hypergeometric functions $_oF_1$, $_1F_1$, a Humbert function ${\Psi}_2$, a Humbert function ${\Phi}_2$. The object of this paper is to present 16 (presumably new) integral representations of Euler type for the Exton hypergeometric function $X_2$ among his twenty $X_i$ (i = 1, ..., 20), whose kernels include the Exton function $X_2$ itself, the Appell function $F_4$, and the Lauricella function $F_C$.

INEQUALITIES AND COMPLETE MONOTONICITY FOR THE GAMMA AND RELATED FUNCTIONS

  • Chen, Chao-Ping;Choi, Junesang
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1261-1278
    • /
    • 2019
  • It is well-known that if ${\phi}^{{\prime}{\prime}}$ > 0 for all x, ${\phi}(0)=0$, and ${\phi}/x$ is interpreted as ${\phi}^{\prime}(0)$ for x = 0, then ${\phi}/x$ increases for all x. This has been extended in [Complete monotonicity and logarithmically complete monotonicity properties for the gamma and psi functions, J. Math. Anal. Appl. 336 (2007), 812-822]. In this paper, we extend the above result to the very general cases, and then use it to prove some (logarithmically) completely monotonic functions related to the gamma function. We also establish some inequalities for the gamma function and generalize some known results.