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A SHARP BOUND FOR ITO PROCESSES

CHANGSUN CHoI

ABsTRACT. Let X and Y be Ité processes with dX, = ¢s;dB, +
Psds and dY; = {sdB; + £sds. Burkholder obtained a sharp bound
on the distribution of the maximal function of Y under the assump-
tion that |Yp| < [Xol, I¢] < l¢l, 1€] < |¥|, and that X is a nonneg-
ative local submartingale. In this paper we consider a wider class
of Itd processes, replace the assumption || < || by a more general
one {¢| < aly|, where & > 0 is a constant, and get a weak-type in-
equality between X and the maximal function of Y. This inequality,
being sharp for all a > 0, extends the work by Burkholder.

1. Introduction

Let (2, F, P) be a complete probability space with a right-continuous
filtration (F;);>0 such that A € Fy whenever A € F and P(A) = 0.
The adapted real Brownian motion B = (B;):>0 starts at 0 and the
process (By — B,)t>s is independent of F; for all s > 0.

Let ¢ and 1 be real predictable processes such that

t
(1.1) P </ (|<p3|2 + lwsl)ds <oo forallt> o) = 1.
0

Also, let ¢ and £ be R¥-valued predictable processes, where v is a
positive integer. We assume the condition (1.1) for ¢ and . The It6
processes X and Y are defined by

t t
Xt=Xo+/ sosst+/ ¥, ds,
(1.2) 0 0

t t
Yt=Yo+/ csst+/ ¢, ds.
o] 0
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We assume that X is constant and that X and Y are continuous.
We set Y* = sup,» |Y:] and || X || = sup E | X ;| where the supremum
is taken over all bounded stopping times 7.

The following inequality is due to Burkholder (1993). Also see
Burkholder (1994) for related inequalities.

THEOREM 1.1. If X >0, ¢ >0, |[Yo| < |Xo|, €] < |¢| and €] < |9,
then
AP(Y* > A) <3| X| forallA>0

and 3 is best possible.

2. A sharp probability bound

Let (,F, P) and (F)¢>0 be as in the introduction. The adapted
square integrable real martingale M starts at 0 and, for all s > 0, the
process (M — M,):>s is independent of F,. Let (M) be the quadratic
variational process of M. The adapted integrable increasing process A
starts at 0. We assume that M and A are continuous. Thus (M) is
also continuous.

We follow Ikeda and Watanabe (1981) for notions of stochastic pro-
cesses. Thus, increasing in the above means non-decreasing. Terms
like positive, negative and decreasing, will be used similarly. Also, one
may see the same book for the basic facts of stochastic processes and
stochastic integrals.

Consider real predictable processes ¢ and % such that for all ¢ > 0

t t
(2.1) / lps|?d (M), < 0o and / |1hs|dA, < oco.
0 0

Let H be a Hilbert space over R. For z,y € H we denote by z - y the
inner product of z and y and put |z|> = z-z. The H-valued predictable
processes ¢ and ¢ satisfy the condition (2.1). The Ité processes X and
Y are defined by

t t
Xt=Xo+/ 0, dMs+/ W, dA,
(2.2) 0 0

t t
y;=Y0+/ cdes+/ ¢ dA,.
0 0
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We assume that Xj is constant and that X and Y are continuous.
Let Y* and || X|| be as in the introduction.

DEFINITION 2.1. For o > 0 we define that Y is a-subordinate to X
if

(2.4) I¢1 < leel,
(2.5) €] < aly.

THEOREM 2.2. If X >0,% >0, and Y is a-subordinate to X, then

(2.6) AP(Y* > X)) < (a+2)||X]| forallA>0

and the constant a + 2 is best possible.

Proof of the inequality. In order to make the key points of the
proof clear we defer some technical details to Section 3 and use some
unproved claims and lemmas in this proof.

We may assume that A =1 and (o + 2)||X|| < 1.
CLAIM 2.3. We may assume that X > 0 and [Y| > 0.

CLAIM 2.4. It suffices to prove
(2.7) P(lY;| 2 1) < (a+2)|| X]||

whenever T is a bounded stopping time.

Let 7 be a bounded stopping time. As a matter of fact, we will
prove the stronger inequality

(2.8) P(X, +|¥:| > 1) < (a+2)X]|.

We may assume that the process X +|Y| can be stopped on the surface
z+lyl=1.
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CrLAM 2.5. It suffices to prove
(2.9) PX;+|Y: =1 <(a+2)EX,

whenever T is a bounded stopping time such that

(2.10) E [ o (M), <o
0

(2.11) X, +|Yi| <1 ifo<t<m

Put § = {(z,y) : * > 0 and y € H with |y| > 0} and define functions
U and V on S by

(2.12) U(z,y) = (ly] - (a+ 1)z) (@ + [y)) /T

and

—(a+2) fzx+lyl <],

(2.13) V(z,y) = { 1-(a+2)x ifz+|y >1.

Let 7 be a bounded stopping time satisfying (2.10) and (2.11). By
Claim 2.3 we have (X;,Y;) € S. And, from (2.11) and (2.13) we see
that the inequality (2.9) is equivalent to the inequality

(2.14) EV(X,,Y;) <0.
LEMMA 2.6. (a) Ifz + |y| < 1, then V(z,y) < U(z,y).

(b) If z > |y|, then U(z,y) < 0.

From (2.11) and (a) of Lemma 2.6 we have EV (X, Y;) <EU(X,,Y;).
Also, |Yo| < | Xo| from (2.3) and X is positive, thus (b) of Lemma 2.6
implies that EU (X, Yp) < 0. Hence, the inequality (2.14) follows from
the inequality

(2.15) EU(X,,Y;) <EU(Xo,Yo).
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Since 7 is bounded and U is smooth, we may use It6’s formula to get

U(X.,-,YT) = U(XO’YO)
+/0 (Uz(XsaYs)‘Ps + Uy(X:an) : Cs)dM

(2.16) + /OT (U:c(Xs,Y:s)"/)s + Uy(Xs, Ys) -53) dA

1 T
t3 / (sz(Xs: Ys)l‘»O3|2 + ZUzy(Xsa Ys) - psCs

2 0
+ Uyy(stYS)Cs ) Cs)d<M>s .

Here U,,(Xs,Ys) can be regarded as a linear transformation from H
to H. For differentiation of vector functions one may see Lang (1968).

The inequality (2.15) follows if we show that the above three inte-
grals in (2.16) have negative expectations.

LEMMA 2.7. (a) Uz(z,y) + a|Uy(z,y)| <0 for all (z,y) € S.

(b) |Uz(z,y)| + [Uy(z, )| <+ 2 if (z,y) € Sand z + |y| < 1.

(¢) Upe(z,y)|h|? + 2Usy(z,y) - hk + Uyy(z,y)k - k < 0 whenever
(z,y) €S, heR, ke H and |h| > |k

The first integral in (2.16) has zero expectation because 7 is bounded
and the process

TAL
t [ (U Yo+ Uy(Xar Vo) )M,
0

is a martingale starting at 0; for this observe that |(s| < |¢;| from (2.4)
and that (2.10), (2.11), (b) of Lemma 2.7 and the Cauchy-Schwarz
inequality imply

Ue(Xs, Y5 908+U(X31Y) Ca d(M >s
2
<E /0 Ve (X, Yo)l + 10X, o)1) loal? d 0),

)
< (a+2)2E/ losl? d (M), < oo
0
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The rest two integrals in (2.16) have negative integrands; thus they
have negative expectations because the processes A and (M) are in-
creasing.

Since ¢ > 0 and || < aly| from (2.5), we use the Cauchy-Schwarz
inequality and (a) of Lemma 2.7 to get

Us(Xs, Yo)tbs + Uy(Xs, Ys) - & < Un(Xis, Yo )95 + Uy (X, Y5)| [€s]

< (Ual X, Y3) + Uy (X, Vo)l s < O

Similarly, the integrand of the third integral is negative because (X, Ys)
€ S from Claim 2.4 and |(,| < |ps| from (2.4): put z = X,y =Y,,h =
s, k= (s and apply (c) of Lemma 2.7.

This proves the inequality in Theorem 2.2 under the assumption of
Claim 2.3, Claim 2.4, Claim 2.5, Lemma 2.6 and Lemma 2.7. We will
elaborate on these claims and lemmas in Section 3. In Section 4 we
construct an example which shows that a + 2 is the best constant.

3. Proof of claims and lemmas

Proof of Claim 2.3. Let It6 processes X and Y satisfy the assump-
tions of Theorem 2.2. For each € > 0, the new processes X + € and
(Y,¢€), where (Y,¢) is H x R-valued, satisfy the extra assumption in
Claim 2.3 as well as the assumptions in Theorem 2.2. Assuming the
inequality (2.6) for these new processes with A = 1 we have

(3.1) P((Y,e)" 21) < (a+2)||X + €.

Notice that Y* < (Y,€)* and || X +€|| = || X|| + €. Thus, (3.1) yields as
€ — 0 the inequality P(Y* > 1) < (a + 2)||X]||, proving Claim 2.3. 0

Proof of Claim 2.4. Define a stopping time 7 by 7 = inf{¢t > 0 :
|Y:| > 1}. Since |Yo| < |Xo| from (2.3) and (a + 2)||X|| < 1 we have
[Yo| < 1 and 7 > 0; recall that |Xo| is constant, thus |Xo| = E|Xo| <
| X|| < 1. We denote by n a positive integer. Observe that 7 An is a
bounded stopping time, |Y;an| < 1 and that if Y* > 1, then 7 < 0o and
|Yz| = 1. Here we used the continuity of Y. Assuming the inequality
(2.7) for T A n, we get

(3.2) P([Yonn| = 1) = P(|[¥rrn| > 1) < (@ +2)| X].
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Also, using Fatou’s lemma we have
(33) P(Y*>1) < P([Y;|=1and 7 < c0) < liminf P(|¥ran| = 1).
From (3.2) and (3.3) we have

P(Y* > 1) < (a+2)l1X],

from which we get P(Y* > 1) < (a+ 2)||X||; first consider (1+1/n)X
and (14 1/n)Y, and let n — oo. This proves Claim 2.4. O

Proof of Claim 2.5. Let 7 be a bounded stopping time. We define
stopping times p and o, by p = inf{t > 0: X; + |Y:| > 1} and

t
onzinf{t>0:/ s d(M)s>n}.
0

Here p is a stopping time because X and Y are continuous. From (2.3),
the assumption that (a4 2)||X|| < 1, and the assumption that X > 0
is constant, we have Xy + |Yo| < 2Xo = 2E X < 2|/ X| < 1. Thus,
X+ |Ysl £1if 0 <t < p. The assumption (2.1) implies o, 1 oo.
Put 7, = 7 A p A 0. Observe that the stopping time 7, satisfies all
the conditions in Claim 2.5: here E [ |¢s]? d (M), < En. Assuming
(2.9) for 7,, we have

P(X,, +[Yr,|=1) < (a+ DEX,, < (a+2)]X].

Observe that if X + |Y;| > 1, then p < 7 and p = 7 A p. Thus, Fatou’s
lemma, gives

P(Xr + Yy 2 1) < P(Xpnp + Yoo = 1)
< liminf P(X,, + |Yr,| = 1) < (a+2)1X])

which yields (2.8) and completes the proof of the Claim 2.5. d
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Proof of Lemma 2.6. Let (z,y) € S.
Proof of (a). We may assume z + |y| < 1 because U(z,y) = V(z,y) if
z + |y| = 1. Write z + |y| = r**L. Since 0 < r < 1, we have

V(z,y) —U(z,y) = —r*2 - (1 -r)(a+2)z <0.

Proof of (b). If |y| < =, then |y| — (e + 1)z < |y| — = < 0, hence
U(z,y) <0. 0

Proof of Lemma 2.7. Differentiating U in (2.12), we have

(a+1){(a+ 2)x + ala+ 2)|y|
(o +1)(z + y) e+

(a+2)y

(a+ 1)(z + |y])

U:z:(x1 y) = -
(3.4)

Uy(z,y) = 1/(at]) "

Now (a) and (b) of Lemma 2.7 are clear from (3.4).
Proof of (c). Let (z,y) € S, h € R, k € H and |h| > |k|. We define a
function G on theset I = {t € R: z +th > 0 and |y + tk| > 0} by

G(t) = U(z + th,y + tk).

Observe that I is an open set, 0 € I and that G(¢) is smooth on I. By
the chain rule one has

G"(0) = Uz (z,9)|h)? + 2Usy (2, ) - hk + Uyy(z,9)k - k.

Hence the proof is complete if we can check G”(0) < 0. If no confusion
arises, we will not write the argument ¢ € I. On I define more functions
K,Qand Rby K=K(t) =z +th, Q=|y+tk|l and R= K + Q.
Writing

G = Rt/ (atl) _ (o 4 2K RY/(e+1),

we get

G = a+ 2RIR1/(G+1) _ (a + 2)th/(a+1) _a + 2KRIR-—a/(a+1),
a+1 a+1
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and
1 «a
1" __ Dl p2 N2 D _ 1 2
nG"=R"'R +—a+1(R) R—-2hRR- KR R+———a+1K(R),

where

_ o+l oai1)/(atl)
= o+ 2R ’

Rearranging terms and inserting (R')2R — R(R')?, we have

nG" = (R'R—KR" - 2hR + (R)*)R

1 «
~R R
+( +a+1 +a+1

a !
= (|kf* - [h")R - — Q(R)* < 0.

K)(R)?

Here we used the observation that K’ = h, Q' = R' — h, QQ’' =
k- (y+tk) and QR" = QQ" = |k|? — (Q')?. Putting t = 0 we get
G"(0) < 0 and this proves (b) of Lemma 2.7. O

4. About the Best Constant

Let (2, F, P), (Ft)t>0 and B = (By):>0 be as in the introduction.
Let « > 0 and 0 < 8 < a + 2. We will construct real Itd processes X
and Y satisfying all the conditions of Theorem 2.2 for which we have
AP(Y* > )) > B||X|| for some A > 0.

We will need to consider sequences (an)n>1, (bn)n>1 and (cn)n>1.
They satisfy a1 = b1 =1/2,¢;1 =0,and if n > 1, then a, + b, +c, =1
and

n—1 an-1 bn—l + Cn-1
41 =
(41) i p On-1t (a+1)n(2n—1) (a+1)n

PROPOSITION 4.1. limy 00 an = 1/(a + 2).
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Proof. Noting b,_1 + ¢p,—1 =1 — a,_1, we compute
_ (a+1)(2n—-1)+2(n—-1) 1
On = Gn-1 (1 (a+1)n(2n —1) * (a+1)n’
With ¢, = a, — 1/(a + 2) one has
. 1_(a-}-l)(2n—1)—+—2(n—1)
mT el (a+1)n(2n -1)
1
(a+ 1)(a+2)n(2n—1)

1 1
<taa(t-1)+ L
n n

forn > 1. Also, 0 < t; = a/(2(a+2)) <landt, >0foraln>1.
Thus, if 1 < K < N, then iteration gives

N 1 1 ]\7—11 N 1
o<tn<t [[(1-2)+m=+> 5 II (t-3)
n=2 n N n=2n k=n+1 k

N 1 Ny K-1 4 N 1
<IM(-7)+X ﬁ+<2§>(1—[ (“;))
n=2 n=K n=K
M1 A} N M1
<exp(—zﬁ) + Z ;2-+ (Znﬁ)exp(— z ﬁ)
n=2 n=K n=1 n=K
Now, one can see, as N — oo, that txy — 0, hence ay — 1/(a + 2).
Since 1/8 > 1/(a + 2) we may choose N so that 1/8 > ay, or
1> fBan.
Define a sequence of stopping times (0, : 3 < n < 4N +1). Put
03 =3. For 1 <n <4N, we let

-+

(4.2) O4n = inf{s > o4n—1: Bs — Bs,,_, € (—2n+1,1)}.
And for 1 <n < 4N, put
(4.3)
Oan—3 =inf{s > oap_a: Bs — Bo,,_, € (—2n + 2,1)},
2
O4n—2 = Oqpn—3 + a1’

2 2
O4n-1 =inf{s > 04n-2: Bs — Boy,_, (— a—+—1"2"_ a+1)}‘
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Finally, put 0,,,, =1+ 0,,.

Observe, from the strong Markov property of the Brownian motion
and the basic facts of exit times of the Brownian motion, that o, is
finite almost surely, and that

(4.4)
P(Bo'4n - B0‘4n-—1 =—2n+ 1)

=1- P(Btmn - BU4n—-1 = 1) = 1/(277’)’
P(BU4n—3 - B¢74n—4 =—2n+ 2)
=1- P(B04n—a - BO’4n—4 = 1) = 1/(27?, - 1)7

2
P(Bouns = Bouns = = )
4n—1 4n—2 a+ 1
2 2 1
~1 —P(Ba4n_1 ~Byya =20 - — 1) - (2n— — 1)%.
We write sgnz=1 if > 0 and sgnz = —1 if 2 < 0. Also, write

(z,y)c for the scalar multiplication ¢(z,y) and 14 for the indicator
random variable on the set A.

It6 processes X and Y are defined by Xy = Yy = 1 and the formula
(1.2). Here we define ¢, 9, ¢ and £ as follows:

(4.5)
if0<s<3=os,let ps=( =19, =& =0;
if1<n<Nandog, 1 <s< o4, let ;=€ =0 and
(‘psa Cs) = (1’ —SgnY04n—1)1{ch4n_l|:1};
ifl<n< N and 64,4 < 8 < 0Oyn_3, let s =& =0 and
(vs,Cs) = (1,Sgn(31/(n—1) - Bl/n))l{Ya4n_4=0};
ifl<n <N andoy,—3<35<04n2,let p; =(s =0 and
(d)s,ss) = (1, a SgnY0'4n—-3)1{|Ya4n_3|=2n—2};
ifl<n<Nandog-o<s<ogm_1,letps=E€ =0and
(05, Cs) = (1, —sgnYo,,  )1(v,, _,|1=2n—2/(at+1)};
ifo,, <s<o,u,,, let ¥s=E =0 and
(0s,¢s) = (L,sgn(Bi/n — Biy(v+1)))1{1v,,  1=035
ifs>0o,y,,let ps=(=19s =& =0.
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Define a,,, b, and ¢, for 1 <n < N by

an = P((Xo4n» You,) = (2n,0)),
b, = P((X0'4n,YG4n) = (07 2”))’
Cn = P((X¢74n7Y04n) = (Oa _zn))'

Then we have a; = b1 = 1/2, ¢; = 0 and for 1 < n < N inductively we
can check (4.1) and a,, + b, + ¢, = 1: we do not check this fully. To
see how the induction can be carried out let’s just consider the change
of (X,Y) from the time 04,4 to the time 04,3, where 1 < n < N.
Observe that {Y,,,_, = 0} depends only on {B; : 3 < s < 04n—4}.
From the definition (4.5) we get

Y04n—3 - Y04n—4
Tan—-3

B / sgn(B1/(n-1) = Bi/n)l{y,,,_,=0}4Bs

4n—4
= (Sgn(Bl/(n-—l) - Bl/n)l{Y,4ﬂ_4=0}) (Boun—s = Boun_a)

because the integrand is F,,, , measurable. The random variables
Yy, =0} sgn(Bi/(n—1) — Bi/n) and B,,,_, — B,,,_, are indepen-
dent because of the strong Markov property of the Brownian motion .
Observe that sgn(Bi/(n—1) — Bi/a) = 1, or —1, each with probability
1/2. Hence writing

Z= (X”4"~3’Y‘74n—3) - (XUAn—4’Y0’4n—4)a

and using (4.4) we have

: 12n-2
P(Z=(1,1)) =P(Z=(1,-1)) = 5 3—en-1,
P(Z=(-2n+2,-2n+2))
= P(Z =(-2n+2,2n - 2)) = % 2n1— Tan-1,

P(Z = (0,0)) =1 —an_1.

Similarly, from (4.2)-(4.5) we can check that the It6 processes X
and Y satisfy all the conditions of Theorem 2.2. The random vec-
tor (X, ) is placed at four positions (0,2N), (0,—-2N),

anN+1? " %an+1
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(4N,2N) and (4N, —2N) with probability by +an/4, cn+an/4, an /4
and ay /4, respectively. Thus

P(Y* >2N)=P(Y, _ =2N)=1.

4N+1

Since X is stopped at o,,,, we have X; — X"4~+1 as t — co. Also,

o] €1 and 0 < ¢ < 1, hence X is a submartingale: we also have
|X| < 4N. Thus, for any bounded stopping time 7, Doob’s optional
sampling theorem gives

EX, SEX,,,, =4N- +4N=T.

+1

Hence || X|| < 2Nay. Since 1 > Bay, with A = 2N we have
AP(Y* > )\) = 2N > 2NBan > Bl X||.

This proves that o + 2 is the best constant. O
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