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APPLICATIONS OF A CERTAIN FAMILY OF
HYPERGEOMETRIC SUMMATION FORMULAS
ASSOCIATED WITH PSI AND ZETA FUNCTIONS

JUNESANG CHOI, H. M. SRIVASTAVA, AND YONGSUP KIM

ABSTRACT. The main object of this paper is first to give two con-
tiguous analogues of a well-knewn hypergeometric summation for-
mula for 21 (1/2). We then apply each of these analogues with a
view to evaluating the sums of several classes of series in terms of
the Psi (or Digamma) and the Zeta functions. Relevant connections
of the series identities presented here with those given elsewhere are
also pointed out.

1. Introduction and Preliminaries

The generalized hypergeometric function with p numerator and g de-
nominator parameters is defined by

1y Opg
2y 2| = pFylon,.. . ap;81,. .., 0 2)
(1.1) Puo-- B
_ i (@1)n .. (op)n ﬁ
o (Bi)n - - (Bg)n !’
where («), denotes the Pochhammer symbol (or the shifted factorial)
defined by

| (n=0)

(1.2) {a)n:=
" ala+1)...(a+n-1) (rneN:={12,38,...}),
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which can also be rewritten in the form:

_T(a+n)

(1.3) (@) = —'lr,'(a"'j"—,

where I is the well-known Gamma function whose Weierstrass canonical
product form is

(1.4) I(z) = e_: ﬁ {(1 N %)“1 ez/ﬂ},

n=1

v being the Euler-Mascheroni constant defined by

1
(1.5) 4= lim ( ——Iogn) ~(),577215664901532... .

n—oo \ £ k
With the notation (1.1), the Gaussian hypergeometric series is 2F1,
which is also denoted simply by F.
The Psi {or Digamma) function is defined as the logarithmic deriva-
tive of the Gamma function:
d _ T'(2)

(1.6) P(z) = o logT'(2) = T2)

We recall here some well-known properties of the 1—function (see [8]):
For a positive integer n,

Y1) =—-v; ¥ (%) = —v —2log2;

(17) n—1 1
e+ -9 =Y —

k=0

The Polygamma functions are defined by (see [8, p. 41])

. n41 .
(1.8) P (z) = { a%;m logT'(z) (ne€N)
¥(z) (n = 0).
By definition it is easy to see that

(1.9)

PO = (Y gt 1,2) (e,
) ) kZ=0 (k+ z)nt "
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where ((z,a) is the generalized (or Hurwitz) Zeta function defined by

oo

(1.10) ¢(z,a) =Y (k+a)™* (Re(2) > L a #0,~1,-2,...)

k=0

and ((z,1) = {(z) is the Riemann Zeta function. It is not difficult to
derive the following properties (see [18, pp. 265-275]):

1 & 1 1 1

(=) = 1= o=z Z Rk—17 Z = 1(; (z, 5) (R(z) > 1);
k=1

(1.11)

¢(z,a) =C({z,n+a)+ ni:(k +a)™* (n€N).
k=0

There are four known main summation theorems for o Fy with argu-
ments 1, —1, and %, which play important roles in theory and applica-
tions. The following summation formula was given by Kummer [11]:

a, b
2 1 l—n
(112) 2F1 1 }' =
sla+b+1);2) T

In this paper we first give two summation formulas for »F; (§) which
are actually contiguous to Kummer’s summation theorem (1.12). We
also show how these formulas can be applied in order to evaluate the
sums of several classes of series in terms of the Psi (or Digamma) and
the Zeta functions.

DU+ da+ 38)
T T (3 + )

2. Contiguous analogues of the summation formula (1.12)

in a closed form like (1.12).
For a given F = F(A, B; C; z), as usual, denote
F(A+) =F(A+1, B; C; z),
F(A4,B-):=F(A+1,B-1;C;2),

The first question is to express

a, b;
2F

B —

1
1+§(a+b);



322 Junesang Choi, H. M. Srivastava, and Yongsup Kim

and so on. Recall a known contiguous formula (see Rainville [14, p. 72]):
1
(2.1) F=F(A-,B+)+ 5(3 + 1 — A}z F(B+,C+).

Now, replacing @ and & by a — 1 and b — 1, respectively, we find from
(1.12) that

a—1, b;
] _r@)r (et )
2.2 F S| =l N2 2
2 “[%(M);zJ T (a7 (64 4)
and
a, b—1,;
’ "1 _T(3)r(3a+3b)
2.3 F Zl = .
. “!g(ﬁb);z] F(ar DT

Setting A =a, B=b—1,C = {a+b), and z = 3 in (2.1), and
applying (2.2) and (2.3) to the resulting equation, we obtain the first
desired summation formula:

(2.4)

a, b;
H ?1
2Fy 1 =
1+§(a+b);2
a+b_f1 1 i 1 . 1
=—2-r(=)r{za+=b _ '
5 (G ) e ‘r(%b)r(%cﬂ-%)}

Replacing a and b by 2a and 2b, respectively, and using I'(z + 1) =
2I'(z), we obtain the following equivalent form of (2.4):

2 F

2a, 2b;q
l+a+b;2

(2.5) :
_F(E)I‘(a-f-b—{—l) 1 B 1
= a—b {r(a)r(b+%) F(b)I‘(a+%)}'
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Another summation formula contiguous to (1.12) and (2.4) is given
by
(2.6)

=1 (g)r (32 ) {P GTaD T I‘l(%‘” ) }

Indeed, we first recall a known contiguous formula (see Rainville {14,
p. 71]):

C-B

(2.7) (1= 2)F = F(4-) - =

zF(C+).

Setting A =a, B=1b, C = }(a+b), and z = § in (2.7), and making
use of (2.2) and (2.4) in the resulting equation, we have the desired
formula (2.6).

If we replace a and b by 2g and 2b, respectively, we obtain the following
equivalent form of (2.6):

2a, 2b; 4
1 ! a+b; 5]

1 1 1
:F(E)F(a”){r(a)r(m%) +F(b)r‘(a+%)}‘

It may be remarked in passing that Lavoie et al. [12] established
many contiguous extensions of a well-known 3F; summation theorem,

and deduced (2.4) and (2.6) in a markedly different way.

(2.8)

3. Product formulas for hypergeometric functions
The summation formulas (2.4) and (2.6) can readily be applied to

derive some contiguous analogues of Kummer’s second transformation
[11]:

- 1 3’.72
(3.1) e 21Fy(a; 2a; ) = o1 (_;O‘*E?E)'
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Indeed, if we let
oo

(3.2) e T 1 F(o; 20+ 1; 2) = Zanm"
=0

and use the Cauchy product rule for two series, we find that

(a)n -n, —2a—mn;1
3 n= ——— o F I
(3.3) a Gat 1), a2 l—a—m2
Setting @ = —n and b = —2a — n in (2.4) in order to evaluate the

2F1(3) in (3.3), we get

_r(l (@)n a+n [(~n— a)
an“*r(2) 2a+ 1), -n! « P(_a“%)F(I_Tn)
(3.4) 1 (@)r, a+n T'(-n—a)
_I‘(ﬁ) (2a+l)n.n! o4 F(—a_%+%)r(_%)

(n € Ng := NU{0}),

so that, finally,

o] o0
(3.5) e % F(a; 2a+1; z) = Z bpa?™ + Z cpzintl
n=0 =0

where
1
3.6 b, =
0 TSR
and
1 1
3.7) Cn =

20+ 1(a+t 3, onl- 2t
From (3.5), (3.6), and (3.7), we obtain

e“%lFl(a; 20+ 1; @)
3.8 1 2 2
(338) qﬂ@m+;£)7fLﬂﬂpm+ii)
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Similarly, by letting

(3.9) e i 1 Fi(a; 20 —1;2) = Eanm‘“,
n=0
we have
(@)n -n, 2—-2a-n;1
3.1 h= o o,
(3.10) @ (20.!-—1)1.1‘":7,!2 1 1—a—mn;2

Now, applying the formula (2.6} to (3.10), we easily obtain another
product formula:

e 3 F(a; 20~ 1; 2)

(3.11) 1 z? T 1 z?
N LA N A _. i adii
0 1( P 2’16)+2(2a~-1)0F1( ’a+2’16)

Both (3.8) and (3.11) were derived elsewhere by Rathie and Nagar {15].
It should be observed that, in view of Kummer’s first transformation
[11]:

(3.12) Fi{a; v, 2) = 1Fly—a; v, ~2),

both (3.8) and (3.11) are the same result: For instance, we just replace
a by a—1 and z by —z in (3.8), and apply (3.12) to obtain (3.11)
immediately from (3.8).

4. Certain classes of infinite series associated with Psi and
Zeta functions

Many infinite series have been evaluated in terms of the Psi and Zeta
functions (see [9], [10}). Al-Sagabi et al. [1i presented a systematic
account of several interesting infinite series expressed in terms of the
Psi (or Digamma) functions. Aular de Durdn et al. [2] examined rather
systematically the sums of numerous interesting families of infinite series
with or without the use of fractional calculus. Shen {16] investigated the
connections between the Stirling numbers s(n, k) of the first kind and the
Riemann Zeta function ¢{n) by means of the Gauss summation formula
for o FY. Various other classes of infinite series have also been evaluated
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by making use of known summation formulas for oF} and 3F> (see [4],
(5], and [6]). In this section we evaluate the sums of certain families of
infinite series by using our formulas (2.5) and (2.8).

We introduce the Stirling numbers s(n, k) of the first kind defined by
the following equation (see [7, pp. 204-218}, [13, p. 43|, and [17, p. 396,
Problem 25)):

™

z2(z~1)---(z=-n-+1) =Zs(n,k)zk.

k=0

From the above definition of s{n, k), the Pochhammer symbol (or the
shifted factorial) can be written in the form:

T

(41)  (@Da=z(z+1--(z+n—1)= S (=1 s(n, k)2F.
k=0

It is not difficult to see also that

n—1
(-1 s, 1) = (n—1Dl;  (~1)"s(n,2) = (n— 1)! ; % :

(4.2) (n— 1) net | 2 1)
(=1 s(n,3) = 5 '{(Zz) _k\;ﬁ}

k=1

Considering (1.3) and differentiating each side of (4.1) with respect
to z, successively, we obtain the following finite sums involving s(n, k) :

z:(—-l)"""'c ks(n, k)25t = (2)}n[y(z + n) — ¥(2)];

x>
I|
-

(—=1)"* k(k — 1) s(n, k)2*2

NgE

ES
1l
X

4y = @ [ - @Y+ +n) ~ D)

(=)™ * k(k — 1)(k — 2) s(n, k)z"3

NE

-
I
w

= (@n| {#(z +m) = $(F + 3{u(z + ) ~ $(2)}
x {pO(z+n) = 4@} + 9D (2 +n) - pD(z)].
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(4.4)
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fz): _HZ 2ﬂ ] 1+b+z)
_P(E)I‘(z+b+1) 1 _ 1
BRREEY JTE-D TOTETD)

oo
= E Onz"
n=0

Setting f(z) := g(z)h(z), where

F(%)F(z—l—b-’rl)
z—b

(4.5) g(z) =

and

1 1

(46) M) = E T+l TGN

and making use of the aforernentioned properties o
Zeta, and Psi functions, we readily obtain
(4.7)

o(0) =7 (3) 70, 10 =~

ﬁ)r(b);
70 = -7 (5 )t n i,
oy 1 v(z)
YOS e T

7' =1 (5 )70 [two+ 0y + G

7 _ 2y 1 1
KO =5 (b+1) * (T (1) [3‘:(2) Bl {d’ (§

+3)

f Gamma, generalized

+C(2,b+1)+b%},

il
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Now, by using Leibniz’s rule for differentiation, we find that

(4.8)
ag = f(0) =1,
1
a1 = £1(0) = ¥(b+ 1) - ¥ (.;_) . % ~ f«((i)ff})’

oo -Hoeen-s(3)

1
_2{¢(b+1)+%+7} %%gu(z,ﬂ 1) - 3¢(2) + 525}

and so on. On the other hand, consider the first equality of (4.4). From
{4.1), we have

(4.9) (22)n = Z A 2,
k=1
where
(4.10) A= (—1)"*s(n, k). 28 (k=1,...,n).

In view of the following series identity:

™ n e

> i Bre=3. Z B¢,

k=0 £==D £=0 k=¢

we obtain

(1+b6+2), = zn:(—l)""'ks(n, E)1+b+2)k

k:D, . k
(4.11) =Y (~1)""*s(n, k) {Z (3)(1 + byF-E. zf}
k=0 £=0
= Z B, ze,
=0
where
(4.12) By = i(—-l)""‘ks(n, k) (I;) (14 b)e—<.

k=t
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It follows from (4.2), (4.3), (4.10), and (4.12) that

(413) Z) =1+ Z 2n l 0.'12 -+ 0522.’ + - )
where
A T
1 A]_ B]_
(4.14) o2 = g (Az - )
2n-1 [ =
=D, [2;E+¢(l+b)_¢(l+b+")] ,

and so on. Considering (4.4), (4.8}, (4.13), and (4.14), we finally obtain
the following formulas:

(4.15) i ﬁ—m Ppb+1) -9 (%) . % _ 1;“((%,)+Fél;);
(4.1£) » )
Z 2n—1fb1 + b}y {2 ZI% kzl —_b]
=;[{ Wb+ 1) w(%)} +%{¢b+1 ()}

r(3)Te)
T+

+H

FCb41) - 3¢(2) + 2].

—2 {¢(b+1)+ +7} =

Formula (4.15) is equivalently written in the form:

1,1,26+1; 1
3F2 -
2,2+ b; 2

(417 b 1\ 1 T (L)1)
1 + 1
- [W’ n-v(3) - ?ﬁT—)‘} "
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Applying the same procedure as above to (2.8), we readily obtain the
following formulas:

S (20)n % F(b)
(4.18) nz::l () ( ) NI ¥ Y el 54
(4.19)
o0 n-1 1 n 1
n=1 27" 1n |:2;E k= +b- 1]
b
{ {w(b v (%)} ) ¥ : D i con- 34(2)} -
+ 3
Just as in the case of (4.15}, (4. 18) can also be written in the equiv-
alent form:
1,1,2b+1; 1
] P 5]
(4.20) O

1 1 T (3T
:§[w(b>—¢(—2—)+-f((b)+—%)]-

Setting b = 1 in (4.16), and using (1.7), (1.11), and the following
known formula (see [5]):
(421) > = L@ - g2

' n?om 2 ’
we readily obtain

o0
(4. 22) Hr

1
= 5((2)!

n=1
where H, denotes the harmonic numbers defined by

1
4.23 H, = —.
(4.23) ; :

Numerous other identities involving the harmonic numbers H,, anal-
ogous to (4.22), can be found in (for example) [3] and [16)].
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