• Title/Summary/Keyword: $\mathcal{P}$(D)

Search Result 30, Processing Time 0.021 seconds

ON SOME MEASURE RELATED WITH POISSON INTEGRAL ON THE UNIT BALL

  • Yang, Gye Tak;Choi, Ki Seong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.89-99
    • /
    • 2009
  • Let $\mu$ be a finite positive Borel measure on the unit ball $B{\subset}\mathbb{C}^n$ and $\nu$ be the Euclidean volume measure such that ${\nu}(B)=1$. For the unit sphere $S=\{z:{\mid}z{\mid}=1\}$, $\sigma$ is the rotation-invariant measure on S such that ${\sigma}(S)=1$. Let $\mathcal{P}[f]$ be the invariant Poisson integral of f. We will show that there is a constant M > 0 such that $\int_B{\mid}{\mathcal{P}}[f](z){\mid}^{p}d{\mu}(z){\leq}M\;{\int}_B{\mid}{\mathcal{P}}[f](z)^pd{\nu}(z)$ for all $f{\in}L^p({\sigma})$ if and only if ${\parallel}{\mu}{\parallel_r}\;=\;sup_{z{\in}B}\;\frac{\mu(E(z,r))}{\nu(E(z,r))}\;<\;\infty$.

  • PDF

ON PETERSON'S OPEN PROBLEM AND REPRESENTATIONS OF THE GENERAL LINEAR GROUPS

  • Phuc, Dang Vo
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.643-702
    • /
    • 2021
  • Fix ℤ/2 is the prime field of two elements and write 𝒜2 for the mod 2 Steenrod algebra. Denote by GLd := GL(d, ℤ/2) the general linear group of rank d over ℤ/2 and by ${\mathfrak{P}}_d$ the polynomial algebra ℤ/2[x1, x2, …, xd] as a connected unstable 𝒜2-module on d generators of degree one. We study the Peterson "hit problem" of finding the minimal set of 𝒜2-generators for ${\mathfrak{P}}_d$. Equivalently, we need to determine a basis for the ℤ/2-vector space $$Q{\mathfrak{P}}_d:={\mathbb{Z}}/2{\otimes}_{\mathcal{A}_2}\;{\mathfrak{P}}_d{\sim_=}{\mathfrak{P}}_d/{\mathcal{A}}^+_2{\mathfrak{P}}_d$$ in each degree n ≥ 1. Note that this space is a representation of GLd over ℤ/2. The problem for d = 5 is not yet completely solved, and unknown in general. In this work, we give an explicit solution to the hit problem of five variables in the generic degree n = r(2t - 1) + 2ts with r = d = 5, s = 8 and t an arbitrary non-negative integer. An application of this study to the cases t = 0 and t = 1 shows that the Singer algebraic transfer of rank 5 is an isomorphism in the bidegrees (5, 5 + (13.20 - 5)) and (5, 5 + (13.21 - 5)). Moreover, the result when t ≥ 2 was also discussed. Here, the Singer transfer of rank d is a ℤ/2-algebra homomorphism from GLd-coinvariants of certain subspaces of $Q{\mathfrak{P}}_d$ to the cohomology groups of the Steenrod algebra, $Ext^{d,d+*}_{\mathcal{A}_2}$ (ℤ/2, ℤ/2). It is one of the useful tools for studying these mysterious Ext groups.

NOTES ON THE SPACE OF DIRICHLET TYPE AND WEIGHTED BESOV SPACE

  • Choi, Ki Seong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.393-402
    • /
    • 2013
  • For 0 < $p$ < ${\infty}$, ${\alpha}$ > -1 and 0 < $r$ < 1, we show that if $f$ is in the space of Dirichlet type $\mathfrak{D}^p_{p-1}$, then ${\int}_{1}^{0}M_{p}^{p}(r,f^{\prime})(1-r)^{p-1}rdr$ < ${\infty}$ and ${\int}_{1}^{0}M_{(2+{\alpha})p}^{(2+{\alpha})p}(r,f^{\prime})(1-r)^{(2+{\alpha})p+{\alpha}}rdr$ < ${\infty}$ where $M_p(r,f)=\[\frac{1}{2{\pi}}{\int}_{0}^{2{\pi}}{\mid}f(re^{it}){\mid}^pdt\]^{1/p}$. For 1 < $p$ < $q$ < ${\infty}$ and ${\alpha}+1$ < $p$, we show that if there exists some positive constant $c$ such that ${\parallel}f{\parallel}_{L^{q(d{\mu})}}{\leq}c{\parallel}f{\parallel}_{\mathfrak{D}^p_{\alpha}}$ for all $f{\in}\mathfrak{D}^p_{\alpha}$, then ${\parallel}f{\parallel}_{L^{q(d{\mu})}}{\leq}c{\parallel}f{\parallel}_{\mathcal{B}_p(q)}$ where $\mathcal{B}_p(q)$ is the weighted Besov space. We also find the condition of measure ${\mu}$ such that ${\sup}_{a{\in}D}{\int}_D(k_a(z)(1-{\mid}a{\mid}^2)^{(p-a-1)})^{q/p}d{\mu}(z)$ < ${\infty}$.

Further Results about the Normal Family of Meromorphic Functions and Shared Sets

  • Qi, Jianming;Zhang, Guowei;Zhou, Linlin
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.1
    • /
    • pp.39-47
    • /
    • 2012
  • Let $\mathcal{F}$ be a family of meromorphic functions in a domain D, and let $k$, $n({\geq}2)$ be two positive integers, and let $S=\{a_1,a_2,{\ldots},a_n\}$, where $a_1$, $a_2$, ${\ldots}$, $a_n$ are distinct finite complex numbers. If for each $f{\in}\mathcal{F}$, all zeros of $f$ have multiplicity at least $k+1$, $f$ and $G(f)$ share the set $S$ in $D$, where $G(f)=P(f^{(k)})+H(f)$ is a differential polynomial of $f$, then$\mathcal{F}$ is normal in $D$.

CURVES WITH MAXIMAL RANK, BUT NOT ACM, WITH VERY HIGH GENERA IN PROJECTIVE SPACES

  • Ballico, Edoardo
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1355-1370
    • /
    • 2019
  • A curve $X{\subset}\mathbb{P}^r$ has maximal rank if for each $t{\in}\mathbb{N}$ the restriction map $H^0(\mathcal{O}_{\mathbb{P}r}(t)){\rightarrow}H^0(\mathcal{O}_X(t))$ is either injective or surjective. We show that for all integers $d{\geq}r+1$ there are maximal rank, but not arithmetically Cohen-Macaulay, smooth curves $X{\subset}\mathbb{P}^r$ with degree d and genus roughly $d^2/2r$, contrary to the case r = 3, where it was proved that their genus growths at most like $d^{3/2}$ (A. Dolcetti). Nevertheless there is a sector of large genera g, roughly between $d^2/(2r+2)$ and $d^2/2r$, where we prove the existence of smooth curves (even aCM ones) with degree d and genus g, but the only integral and non-degenerate maximal rank curves with degree d and arithmetic genus g are the aCM ones. For some (d, g, r) with high g we prove the existence of reducible non-degenerate maximal rank and non aCM curves $X{\subset}\mathbb{P}^r$ with degree d and arithmetic genus g, while (d, g, r) is not realized by non-degenerate maximal rank and non aCM integral curves.

ON SIDON SETS IN A RANDOM SET OF VECTORS

  • Lee, Sang June
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.503-517
    • /
    • 2016
  • For positive integers d and n, let $[n]^d$ be the set of all vectors ($a_1,a_2,{\cdots},a_d$), where ai is an integer with $0{\leq}a_i{\leq}n-1$. A subset S of $[n]^d$ is called a Sidon set if all sums of two (not necessarily distinct) vectors in S are distinct. In this paper, we estimate two numbers related to the maximum size of Sidon sets in $[n]^d$. First, let $\mathcal{Z}_{n,d}$ be the number of all Sidon sets in $[n]^d$. We show that ${\log}(\mathcal{Z}_{n,d})={\Theta}(n^{d/2})$, where the constants of ${\Theta}$ depend only on d. Next, we estimate the maximum size of Sidon sets contained in a random set $[n]^d_p$, where $[n]^d_p$ denotes a random set obtained from $[n]^d$ by choosing each element independently with probability p.

TENSOR PRODUCTS OF C*-ALGEBRAS WITH FIBRES GENERALIZED NONCOMMUTATIVE TORI AND CUNTZ ALGEBRAS

  • Boo, Deok-Hoon;Park, Chun-Gil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.139-144
    • /
    • 2000
  • The generalized noncommutative torus $T_{\rho}^d$ of rank m was defined in [2]. Assume that for the completely irrational noncommutative subtorus $A_{\rho}$ of rank m of $T_{\rho}^d$ there is no integer q > 1 such that $tr(K_0(A_{\rho}))=\frac{1}{q}{\cdot}tr(K_0(A_{\rho^{\prime}}))$ for $A_{\rho^{\prime}}$ a completely irrational noncommutative torus of rank m. All $C^*$-algebras ${\Gamma}({\eta})$ of sections of locally trivial $C^*$-algebra bundles ${\eta}$ over $M=\prod_{i=1}^{e}S^{2k_i}{\times}\prod_{i=1}^{s}S^{2n_i+1}$, $\prod_{i=1}^{s}\mathbb{PR}_{2n_i}$, or $\prod_{i=1}^{s}L_{k_i}(n_i)$ with fibres $T_{\rho}^d{\otimes}M_c(\mathbb{C})$ were constructed in [6, 7, 8]. We prove that ${\Gamma}({\eta}){\otimes}M_{p^{\infty}}$ is isomorphic to $C(M){\otimes}A_{\rho}{\otimes}M_{cd}(\mathbb{C}){\otimes}M_{p^{\infty}}$ if and only if the set of prime factors of cd is a subset of the set of prime factors of p, that $\mathcal{O}_{2u}{\otimes}{\Gamma}({\eta})$ is isomorphic to $\mathcal{O}_{2u}{\otimes}C(M){\otimes}A_{\rho}{\otimes}M_{cd}(\mathbb{C})$ if and only if cd and 2u - 1 are relatively prime, and that $\mathcal{O}_{\infty}{\otimes}{\Gamma}({\eta})$ is not isomorphic to $\mathcal{O}_{\infty}{\otimes}C(M){\otimes}A_{\rho}{\otimes}M_{cd}(\mathbb{C})$ if cd > 1 when no non-trivial matrix algebra can be ${\Gamma}({\eta})$.

  • PDF

A NOTE ON CYCLOTOMIC UNITS IN FUNCTION FIELDS

  • Jung, Hwanyup
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.433-438
    • /
    • 2007
  • Let $\mathbb{A}=\mathbb{F}_q[T]$ and $k=\mathbb{F}_q(T)$. Assume q is odd, and fix a prime divisor ${\ell}$ of q - 1. Let P be a monic irreducible polynomial in A whose degree d is divisible by ${\ell}$. In this paper we define a subgroup $\tilde{C}_F$ of $\mathcal{O}^*_F$ which is generated by $\mathbb{F}^*_q$ and $\{{\eta}^{{\tau}^i}:0{\leq}i{\leq}{\ell}-1\}$ in $F=k(\sqrt[{\ell}]{P})$ and calculate the unit-index $[\mathcal{O}^*_F:\tilde{C}_F]={\ell}^{\ell-2}h(\mathcal{O}_F)$. This is a generalization of [3, Theorem 16.15].

  • PDF

ON THE MARTINGALE EXTENSION OF LIMITING DIFFUSION IN POPULATION GENETICS

  • Choi, Won
    • Korean Journal of Mathematics
    • /
    • v.22 no.1
    • /
    • pp.29-36
    • /
    • 2014
  • The limiting diffusion of special diploid model can be defined as a discrete generator for the rescaled Markov chain. Choi([2]) defined the operator of projection $S_t$ on limiting diffusion and new measure $dQ=S_tdP$. and showed the martingale property on this operator and measure. Let $P_{\rho}$ be the unique solution of the martingale problem for $\mathcal{L}_0$ starting at ${\rho}$ and ${\pi}_1,{\pi}_2,{\cdots},{\pi}_n$ the projection of $E^n$ on $x_1,x_2,{\cdots},x_n$. In this note we define $$dQ_{\rho}=S_tdP_{\rho}$$ and show that $Q_{\rho}$ solves the martingale problem for $\mathcal{L}_{\pi}$ starting at ${\rho}$.

THE GROWTH OF BLOCH FUNCTIONS IN SOME SPACES

  • Wenwan Yang;Junming Zhugeliu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.959-968
    • /
    • 2024
  • Suppose f belongs to the Bloch space with f(0) = 0. For 0 < r < 1 and 0 < p < ∞, we show that $$M_p(r,\,f)\,=\,({\frac{1}{2\pi}}{\int_{0}^{2\pi}}\,{\mid}f(re^{it}){\mid}^pdt)^{1/p}\,{\leq}\,({\frac{{\Gamma}(\frac{p}{2}+1)}{{\Gamma}(\frac{p}{2}+1-k)}})^{1/p}\,{\rho}{\mathcal{B}}(log\frac{1}{1-r^2})^{1/2},$$ where ρʙ(f) = supz∈ⅅ(1 - |z|2)|f'(z)| and k is the integer satisfying 0 < p - 2k ≤ 2. Moreover, we prove that for 0 < r < 1 and p > 1, $${\parallel}f_r{\parallel}_{B_q}\,{\leq}\,r\,{\rho}{\mathcal{B}}(f)(\frac{1}{(1-r^2)(q-1)})^{1/q},$$ where fr(z) = f(rz) and ||·||ʙq is the Besov seminorm given by ║f║ʙq = (∫𝔻 |f'(z)|q(1-|z|2)q-2dA(z)). These results improve previous results of Clunie and MacGregor.