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Abstract. Let F be a family of meromorphic functions in a domain D, and let k, n(≥ 2)

be two positive integers, and let S = {a1, a2, ..., an}, where a1, a2, ..., an are distinct finite

complex numbers. If for each f ∈ F, all zeros of f have multiplicity at least k + 1, f and

G(f) share the set S in D, where G(f) = P (f (k))+H(f) is a differential polynomial of f ,

then F is normal in D.

1. Introduction

Let C be the whole complex domain. Let D be a domain in C and F a family
of meromorphic functions defined in D. F is said to be normal in D, in the sense
of Montel, if each sequence {fn} ⊂ F has a subsequence {fnj} which converse
spherically locally uniformly in D, to a meromorphic function or ∞.(see [3]).

Let f and g be meromorphic functions on a domain D, and let a and b be two
complex numbers. If g(z) = b whenever f(z) = a, we write

f(z) = a ⇒ g(z) = b.
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If f(z) = a ⇒ g(z) = b and g(z) = b ⇒ f(z) = a, we write

f(z) = a ⇔ g(z) = b.

If f(z) = a ⇔ g(z) = a, we say that f and g share a on D.
Let ai(z), (i = 1, 2, . . . , q − 1), bj(z), (j = 1, 2, . . . , n) be analytic in D,

n0, n1, . . . , nk be non-negative integers. q be a positive integer. Set

P (ω) = ωq + aq−1(z)ω
q−1 + . . .+ a1(z)ω,

M(f, f ′, . . . , f (k)) = fn0(f ′)n1 . . . (f (k))nk ,

γM = n0 + n1 + . . .+ nk,

ΓM = n0 + 2n1 + . . .+ (k + 1)nk.

M(f, f ′, . . . , f (k)) is called the differential monomial of F , γM the degree of
M(f, f ′, . . . , f (k)) and ΓM the weight of M(f, f ′, . . . , f (k)).

Let Mi(f, f
′, . . . , f (k)), (i = 1, 2, . . . , n) be differential monomials of f . Set

H(f, f ′, . . . , f (k)) = b1(z)M1(f, f
′, . . . , f (k)) + . . .+ bn(z)Mn(f, f

′, . . . , f (k)),

γH = max{γM1 , γM2 , . . . , γMn},

ΓH = max{ΓM1 ,ΓM2 , . . . ,ΓMn}.

H(f, f ′, . . . , f (k)) is called the differential polynomial of f , γH the degree of
H(f, f ′, . . . , f (k)) and ΓH the weight of H(f, f ′, . . . , f (k)).

Set
Γ

γ
|H = max{ΓM1

γM1

,
ΓM2

γM2

, . . . ,
ΓMn

γMn

},

G(f) = P (f (k)) +H(f, f ′, . . . , f (k)).

Schwick [7] discovered a connection between normality criteria and shared values
and proved

Theorem A. Let F be a family of meromorphic functions in a domain D, and a,
b, c be distinct complex numbers, If for each f ∈ F, f and f ′ share a, b, c, then F

is normal in D.

Pang and Zalcman [6] improved Theorem A as follows.

Theorem B. Let F be a family of meromorphic functions in a domain D, and let
a, b be two distinct complex numbers. If, for each f ∈ F, f and f ′ share a and b in
D, then F is normal in D.

In 2002, Fang and Zalcman [2] proved

Theorem C. Let F be a family of meromorphic functions in a domain D, let a be
nonzero finite complex number, and let k be a positive integer. If, for each f ∈ F,
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all zeros of f have multiplicity at least k + 1, and f and f (k) share a in D, then F

is normal in D.

Let S be a set of complex numbers. If f(z) ∈ S if and only if g(z) ∈ S in a
domain D, then we say f and g share the set S in D.

It is natural to ask that that whether Theorem C is valid or not if f and f (k)

share a value a was replaced by f and f (k) share a set S?

Recently, Lei, Fang and Yang [4] proved:

Theorem D. Let F be a family of meromorphic functions in a domain D, let
n(≥ 2), k be two positive integers, and let S = {a1, a2, ..., an}, where a1, a2, ..., an
are distinct finite complex numbers. If for each f ∈ F, all zeros of f have multiplicity
at least k + 1, and f and f (k) share the set S in D, then F is normal in D.

Theorem E. Let F be a family of meromorphic functions in a domain D, let n,m, k
be three positive integers, and let S = {a1, a2, ..., an}, S2 = {b1, b2, ..., bm} where
a1, a2, ..., an, b1, b2, ...bm are distinct finite complex numbers. If for each f ∈ F, all
zeros of f have multiplicity at least k, and f and f (k) share the sets S1 and S2 in
D, then F is normal in D.

In [4], Lei, Fang and Yang give the examples to show all zeros of f have multi-
plicity are best possible in the above theorems.

In this paper, we extend Theorem D and Theorem E as follows.

Theorem 1. Let F be a family of meromorphic functions in a domain D, let
n(≥ 2), k be two positive integers, and let S = {a1, a2, ..., an}, where a1, a2, ..., an
are distinct finite complex numbers. If for each f ∈ F, all zeros of f have multiplicity
at least k+1, and f and G(f) share the set S in D, where G(f) = P (f (k)) +H(f)
be a differential polynomial of f satisfying q ≥ γH , and Γ

γ |H < k + 1, then F is
normal in D.

Theorem 2. Let F be a family of meromorphic functions in a domain D, let n,m, k
be three positive integers, and let S1 = {a1, a2, ..., an}, S2 = {b1, b2, ..., bm} where
a1, a2, ..., an, b1, b2, ...bm are distinct finite complex numbers. If for each f ∈ F, all
zeros of f have multiplicity at least k, and f and P (f (k)) share the sets S1 and S2

in D, where ai(z) in P (f) are constants, then F is normal in D.

By Theorem 1, we immediately deduce

Corollary 1. Let F be a family of meromorphic functions in a domain D, let
n(≥ 2), k be two positive integers, and let S = {a1, a2, ..., an}, where a1, a2, ..., an
are distinct finite complex numbers. If for each f ∈ F, all zeros of f have multiplicity
at least k+1, and f and L(f) share the set S in D, where L(f) = f (k)+a1(z)f

(k−1)+
a2(z)f

(k−2)+, ...,+ak−1(z)f
′ + ak(z)f and ai(z), (i = 1, 2, . . . , k) are analytic in D,

then F is normal in D.

By Theorem 2, we immediately deduce
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Corollary 2. Let F be a family of meromorphic functions in a domain D, let n,m, k
be three positive integers, and let S1 = {a1, a2, ..., an}, S2 = {b1, b2, ..., bm} where
a1, a2, ..., an, b1, b2, ...bm are distinct finite complex numbers. If for each f ∈ F, all
zeros of f have multiplicity at least k, and f and (f (k))q share the set S1 and S2 in
D, where q is a positive integer, then F is normal in D.

2. Preliminaries and lemmas

In order to prove our results, we need the following lemmas.

Lemma 2.1[6,9]. Let F be a family of meromorphic functions in the unit disc △
with the property that for each f ∈ F, all zeros of multiplicity at least k. Suppose
that there exists a number A ≥ 1 such that |f (k)(z)| ≤ A whenever f ∈ F and f = 0.
If F is not normal in ∆, then for 0 ≤ α ≤ k, there exist

1. a number r ∈ (0, 1);
2. a sequence of complex numbers zn, |zn| < r;
3. a sequence of functions fn ∈ F;
4. a sequence of positive numbers ρn → 0+;
such that gn(ξ) = ρ−α

n fn(zn+ρnξ) locally uniformly (with respect to the spherical
metric) to a nonconstant meromorphic function g(ξ) on C, and moreover, the zeros
of g(ξ) are of multiplicity at least k, g♯(ξ) ≤ g♯(0) = kA + 1. In particular, g has
order at most 2.

Here, as usual, g♯(ξ) = |g′(ξ)|
1+|g(ξ)|2 is the spherical derivative.

Lemma 2.2([1]). Let f(z) be a transcendental meromorphic function of finite or-
der and k be a positive integer, let a be a non-zero finite complex number. If all
zeros of f(z) are of multiplicity at least k+1, then f (k)(z) assume a infintely often.

Lemma 2.3([8]). Let f(z) = anz
n+an−1z

n−1+, ...,+a0+
q(z)
p(z) , where a0, a1, ..., an

are constants with an ̸= 0, and q(z) and p(z) are co-prime polynomials with
deg q(z) < deg p(z); and let k be a positive integer. If f (k)(z) ̸= 1, then

f(z) =
zk

k!
+, ...,+a0 +

1

az + b
,

where a(̸= 0), b, a0, ... are constants.

3. Proof of Theorem 1 and Theorem 2

Proof of Theorem 1. We may assume that S = {a, b}, where a and b are two
distinct constants and D = ∆ = {|z| < 1}, the unit disk. Now we consider two
cases

Case 1. ab ̸= 0. Suppose that F is not normal in D = ∆. Withoutloss of generality,
we assume that F is not normal at z0 = 0. Then, by Lemma 2.1, there exist
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1. a number r ∈ (0, 1);

2. a sequence of complex numbers zj , |zj | < r;

3. a sequence of functions fj ∈ F;

4. a sequence of positive numbers ρj → 0+

such that gj(ξ) =
fj(zj+ρjξ)

ρk
j

converges uniformly with respect to the spherical

metric to a non-constant mermorphic functions g(ξ) in C. Moreover, g(ξ) is of
order at most 2, all of whose zeros have multiplicity at least k + 1. Set Q(w) =
wq + aq−1(0)w

q−1+, ...,+a1(0)w.

We claim that

(i) Q(g(k)) ̸= a,

(ii) Q(g(k)) ̸= b.

Suppose now that Q(g(k)(ξ0)) = a. We claim that Q(g(k)) ̸≡ a. Otherwise, from
the definition ofQ(w), there exist a nonzero constant h such that g(k)(ξ) ≡ h, g must
be a polynomial of at most degree k, which contradicts the fact that each zero of
g(ξ) are of multiplicity at least k+1. Since Q(g(k)(ξ0)) = a. Obviously, g(ξ0) ̸= ∞.
Hence there exists δ > 0 such that g(ξ) is analytic on G2δ = {ξ : |ξ − ξ0| < 2δ}.
Thus g

(i)
j (ξ)(i = 0, 1, 2, ..., k) are analytic on Gδ = {ξ : |ξ − ξ0| < δ} for large j and

g
(i)
j (ξ) converges uniformly to g(i)(ξ) (i = 0, 1, 2, ..., k) on Gδ = {ξ : |ξ − ξ0| ≤ δ}.

As

G(fj)(zj + ρjξ)− a = P (f
(k)
j (zj + ρjξ)) +H(fj , f

′
j , . . . , f

(k)
j )(zj + ρjξ)− a,

and

H(fj , f
′
j , . . . , f

(k)
j )(zj + ρjξ) =

n∑
i=1

bi(zj + ρjξ)ρ
(k+1)γMi

−ΓMi
j Mi(gj , g

′
j , . . . , g

(k)
j )(ξ).

Considering bi(z) are analytic on D (i = 1, 2, . . . , n), we have

|bi(zj + ρjξ)| ≤ M

(
1 + r

2
, bi(z)

)
< ∞, (i = 1, 2, . . . , n)

for sufficiently large j.

Hence we deduce from Γ
γ |H < k + 1 that

n∑
i=1

bi(zj + ρjξ)ρ
(k+1)γMi

−ΓMi
j Mi(gj , g

′
j , . . . , g

(k)
j )(ξ)

converges uniformly to 0 on D δ
2
= {ξ : |ξ − ξ0| < δ

2}.
Thus we know that G(fj)(zj + ρjξ)− a converges uniformly to Q(g(k))− a on

D δ
2
= {ξ : |ξ − ξ0| < δ

2}.
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Hence, by Hurwitz’s theorem we deduce that there exist ξj , ξj → ξ0 such that,
for large j,

P (g
(k)
j (ξj)) +

m∑
i=1

bi(zj + ρjξj)ρ
(k−1)n1+,...,+nk−1

j Mi(g, g
′
j , ..., g

(k)
j )(ξj) = a,

thus

P (fk
j (zj + ρjξj)) +H(fj , f

′
j , ..., f

(k)
j )(zj + ρjξj) = a.

It follows from G(f) = a ⇒ f = a or b that fj(zj + ρjξj) = a or b.
Thus we have g(ξ0) = lim

j→∞
gj(ξj) = ∞, which contradicts Q(g(k)(ξ0)) = a.

In a similar fashion, we can prove that Q(g(k))(ξ0) ̸= b. This completes the
proof of (i) and (ii).

By (ii), it follows Q(g(k)) ̸= b and the definition of Q(w) that there exist a
non-zero constant d satisfying g(k) ̸= d. By Lemma 2.2, we know g is not a tran-
scendental meromorphic function. Since g has zeros of multiplicity at least k + 1
and g(k) ̸= d, it follows that g is not a polynomial. Hence by Lemma 2.2, we obtain

that g(ξ) = dξk

k! + · · ·+ a0 +
1

Aξ+B , where B,A( ̸= 0), a0, ... are constants. Thus

g(k)(ξ) = d+
(−1)kk!Ak

(Aξ +B)k+1
.

It follows that g(k)(ξ) = h has solutions, So Q(g(k)) = a has solutions, which
contradicts (i). Hence F is normal in D.

Case 2. ab = 0. We may assume that b = 0. Suppose that F is not normal
in D = ∆. Withoutloss of generality, we assume that F is not normal at z0 = 0.
Then, by Lemma 2.1, there exist

1. a number r ∈ (0, 1);
2. a sequence of complex numbers zj , |zj | < r;
3. a sequence of functions fj ∈ F;
4. a sequence of positive numbers ρj → 0+

such that gj(ξ) =
fj(zj+ρjξ)

ρk
j

converges uniformly with respect to the spherical

metric to a non-constant mermorphic functions g(ξ) in C. Moreover, g(ξ) is of
order at most 2, all of whose zeros have multiplicity at least k + 1. Set Q(w) =
wq + aq−1(0)w

q−1+, ...,+a1(0)w.
We claim that

(iii) Q(g(k)) ̸= a,
(iv) Q(g(k)) = 0 ⇔ g = 0.

Now we prove (iii). Suppose now that Q(g(k)(ξ0)) = a. We claim that Q(g(k)) ̸≡
a. Otherwise, from the definition of Q(w), there exist a nonzero constant h such
that g(k)(ξ) ≡ h, g must be a polynomial of at most degree k, which contradicts the
fact that each zero of g(ξ) are of multiplicity at least k + 1. Since Q(g(k)(ξ0)) = a.
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Suppose Q(g(k)(ξ0)) = a, by Hurwitz’s theorem, we know that there exists {ξj},
ξj → ξ0, such that, for j sufficiently large, and the similarly proof about case 1, we
obtain G(fj)(zj + ρjξj) converges uniformly to Q(g(k)) on D δ

2
= {ξ : |ξ − ξ0| < δ

2}.
So

G(fj(zj + ρjξj)) = a.

It now follows from G(f) = a ⇒ f = a or 0 that fj(zj + ρjξj) = a or 0. If
fj(zj + ρjξj) = a, then

gj(ξj) =
fj(zj + ρjξj)

ρkj
=

a

ρkj
.

So g(ξ0) = lim
j→∞

gj(ξj) = ∞, which contradicts Q(g(k)(ξ0)) = a. If fj(zj+ρjξj) = 0,

then Q(g(k)(ξ)) = a ⇒ g = 0. From the definition of Q(w), similarly the proof of
case 1, there exists a nonzero constant h such that g(k)(ξ) = h. So all zeros of
g(k)(ξ) = h are the zeros of g = 0. By the all zeros of g have multiplicity at least
k + 1, we know all zeros of g are zeros of g(k). So all zeros of g(k)(ξ) = h are the
zeros of g(k)(ξ) = 0, we deduce h = 0, a contradiction.

Next, we prove(iv). Suppose now that Q(g(k)(ξ0)) = 0. We claim that
Q(g(k)) ̸≡ 0. Otherwise, from the definition of Q(w), we get g(k)(ξ) ≡ 0, g must
be a polynomial of at most degree k − 1, which contradicts the fact that each zero
of g(ξ) are of multiplicity at least k + 1. Since Q(g(k)(ξ0)) = 0. By Hurwitz’s
theorem, we know that there exists {ξj}, ξj → ξ0, such that, for j sufficiently large,
and the similarly above proof, we obtain G(fj(zj + ρjξj)) = 0. It now follows from
G(f) = 0 ⇒ f = a or 0 that fj(zj + ρjξj) = a or 0. If fj(zj + ρjξj) = a, then
g(ξ0) = lim

j→∞
gj(ξj) = ∞, which contradicts Q(g(k)(ξ0)) = 0.

Hence fj(zj + ρjξj) = 0, so that g(ξ0) = lim
j→∞

gj(ξj) = 0. Thus we deduce that

Q(g(k)) = 0 ⇒ g = 0. Obviously, g = 0 ⇒ g(k) = 0 ⇒ Q(g(k)) = 0. This proves
(iv).

By (iii), it follows Q(g(k)) ̸= a and the definition of Q(w) that there exist
a non-zero constant h satisfying g(k) ̸= h. By Lemma 2.2, We know g is not a
transcendental meromorphic function. Since g has zeros of multiplicity at least
k + 1 and g(k) ̸= h, it follows that g is not a polynomial. Hence by Lemma 2.3, we

obtain that g(ξ) = hξk

k! + · · · + a0 +
1

Aξ+B , where B,A( ̸= 0), a0, ... are constants.

By the condition that g has zeros of multiplicity at least k + 1, thus g(ξ) has only

a zero. On the other hand, g(k)(ξ) = h+ (−1)kk!Ak

(Aξ+B)k+1 . Obviously, g(k) = 0 has k + 1

distinct solutions, which contradicts g(k) = 0 ⇒ Q(g(k)) = 0 ⇒ g = 0. Hence F is
normal in D. The proof of Theorem 1.1 is complete. 2

Proof of theorem 2. We may assume that S1 = {a, b}, S2 = {c} where a, b, c are
three distinct constants and D = ∆ = {|z| < 1}. Suppose that F is not normal
in ∆. Then by Lemma 2.1, we can find fj ∈ F, zj ∈ ∆ and ρj → 0+ such that
gj(ξ) = fj(zj+ρjξ) converges locally uniformly with respect to the spherical metric
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to a nonconstant meromorphic function g on C, all of whose zeros have multiplicity
at least k.

We claim that

(i) g(k) ̸= 0,
(ii) g ̸= a, g ̸= b, and g ̸= c.

Suppose now that g(k)((ξ0)) = 0. Obviously, g(ξ0) ̸= ∞. We claim that g(k) ̸≡ 0.
Otherwise, g must be a polynomial of degree less than k, which contradicts the fact
that each zero of g(ξ) are of multiplicity at least k. Similarly above the proof
of theorem 1, there exist a constant h′ satisfying g(k) = h′ ⇒ P (g(k)) = a, and

g
(k)
j (ξ)− ρkjh

′ → g(k)(ξ) on a neighborhood of ξ0; also there exists ξj , ξj → ξ0, such
that (for j sufficiently large)

0 = g(k)(ξ0) = g
(k)
j (ξj)− ρkjh

′ = ρkj (f
(k)
j (zj + ρjξj)− h′).

Thus f
(k)
j (zj + ρjξj) = h′. So we obtain P (f

(k)
j (ξj)) = a.

It follows from P (f (k)) = a ⇒ f = a or b that fj(zj + ρjξj) = a or b, and so
g(ξ0) = lim

j→∞
gj(ξj) = a or b. In a similar fashion, there exist a constant p satisfying

g(k) = p ⇒ P (g(k)) = c. Using g
(k)
j (ξ)− ρkj p, and the similarly above the proof, we

obtain that g(ξ0) = c, which contradicts a ̸= c and b ̸= c. This completes the proof
of (i).

Next, we prove (ii). Suppose that g(ξ0) = a. Then there exists ξj → ξ0, such
that(for j sufficiently large)

a = g(ξ0) = gj(ξj) = fj(zj + ρjξj).

Thus P (f
(k)
j ) = a or b. So there exist two constants h′ and d such that g

(k)
j (ξj) = h′

or d. Therefore, g(k)(ξ0) = lim
j→∞

ρkj g
(k)
j (ξj) = 0, which contradicts (i).

In a similar fashion, we obtain that g ̸= b and g ̸= c.
Now by Picard’s Theorem and (ii), g is a constant, a contradiction. Thus F is

normal in D. Theorem is proved. 2
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