• Title/Summary/Keyword: $\Gamma$-semigroup

Search Result 27, Processing Time 0.02 seconds

Weakly Prime Ideals in Involution po-Γ-Semigroups

  • Abbasi, M.Y.;Basar, Abul
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.4
    • /
    • pp.629-638
    • /
    • 2014
  • The concept of prime and weakly prime ideal in semigroups has been introduced by G. Szasz [4]. In this paper, we define the involution in po-${\Gamma}$-semigroups, then we extend some results on prime, semiprime and weakly prime ideals to the involution po-${\Gamma}$-semigroup S. Also, we characterize intra-regular involution po-${\Gamma}$-semigroups. We establish that in the involution po-${\Gamma}$-semigroup S such that the involution preserves the order, an ideal of S is prime if and only if it is both weakly prime and semiprime and if S is commutative, then the prime and weakly prime ideals of S coincide. Finally, we prove that if S is a po-${\Gamma}$-semigroup with order preserving involution, then the ideals of S are prime if and only if S is intra-regular.

ON THE LEFT REGULAR po-Γ-SEMIGROUPS

  • Kwon, Young In;Lee, Sang Keun
    • Korean Journal of Mathematics
    • /
    • v.6 no.2
    • /
    • pp.149-154
    • /
    • 1998
  • We consider the ordered ${\Gamma}$-semigroups in which $x{\gamma}x(x{\in}M,{\gamma}{\in}{\Gamma})$ are left elements. We show that this $po-{\Gamma}$-semigroup is left regular if and only if M is a union of left simple sub-${\Gamma}$-semigroups of M.

  • PDF

INTUITIONISTIC FUZZY IDEALS IN ORDERED SEMIGROUPS

  • Khan, Asghar;Khan, Madad;Hussain, Saqib
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.311-324
    • /
    • 2010
  • We prove that a regular ordered semigroup S is left simple if and only if every intuitionistic fuzzy left ideal of S is a constant function. We also show that an ordered semigroup S is left (resp. right) regular if and only if for every intuitionistic fuzzy left(resp. right) ideal A = <$\mu_A$, $\gamma_A$> of S we have $\mu_A(a)\;=\;\mu_A(a^2)$, $\gamma_A(a)\;=\;\gamma_A(a^2)$ for every $a\;{\in}\;S$. Further, we characterize some semilattices of ordered semigroups in terms of intuitionistic fuzzy left(resp. right) ideals. In this respect, we prove that an ordered semigroup S is a semilattice of left (resp. right) simple semigroups if and only if for every intuitionistic fuzzy left (resp. right) ideal A = <$\mu_A$, $\gamma_A$> of S we have $\mu_A(a)\;=\;\mu_A(a^2)$, $\gamma_A(a)\;=\;\gamma_A(a^2)$ and $\mu_A(ab)\;=\;\mu_A(ba)$, $\gamma_A(ab)\;=\;\gamma_A(ba)$ for all a, $b\;{\in}\;S$.

ON INTUITIONISTIC FUZZY PRIME ${\Gamma}$-IDEALS OF ${\Gamma}$-LA-SEMIGROUPS

  • Abdullah, Saleem;Aslam, Muhammad
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.3_4
    • /
    • pp.603-612
    • /
    • 2012
  • In this paper, we introduce and study the intuitionistic fuzzy prime (semi-prime) ${\Gamma}$-ideals of ${\Gamma}$-LA-semigroups and some interesting properties are investigated. The main result of the paper is: if $A={\langle}{\mu}_A,{\gamma}_A{\rangle}$ is an IFS in ${\Gamma}$-LA-semigroup S, then $A={\langle}{\mu}_A,{\gamma}_A{\rangle}$ is an intuitionistic fuzzy prime (semi-prime) ${\Gamma}$-ideal of S if and only if for any $s,t{\in}[0,1]$, the sets $U({\mu}_A,s)=\{x{\in}S:{\mu}_A(x){\geq}s\}$ and $L({\gamma}_A,t)=\{x{\in}S:{\gamma}_A(x){\leq}t\}$ are prime (semi-prime) ${\Gamma}$-ideals of S.

THE WEAKLY SEMI-PRIME IDEALS OF po-Γ-SEMIGROUPS

  • Kwon, Young In;Lee, Sang Keun
    • Korean Journal of Mathematics
    • /
    • v.5 no.2
    • /
    • pp.135-139
    • /
    • 1997
  • We introduce the concepts of weakly prime and weakly semi-prime ideals in po-${\Gamma}$-semigroup and give some characterizations of weakly prime and weakly semi-prime ideals of po-${\Gamma}$-semigroups analogous to the characterizations of weakly prime and weakly semi-prime ideals of po-semigroups considered by N. Kehayopulu.

  • PDF

THE COMPOSITION SERIES OF IDEALS OF THE PARTIAL-ISOMETRIC CROSSED PRODUCT BY SEMIGROUP OF ENDOMORPHISMS

  • ADJI, SRIWULAN;ZAHMATKESH, SAEID
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.869-889
    • /
    • 2015
  • Let ${\Gamma}^+$ be the positive cone in a totally ordered abelian group ${\Gamma}$, and ${\alpha}$ an action of ${\Gamma}^+$ by extendible endomorphisms of a $C^*$-algebra A. Suppose I is an extendible ${\alpha}$-invariant ideal of A. We prove that the partial-isometric crossed product $\mathcal{I}:=I{\times}^{piso}_{\alpha}{\Gamma}^+$ embeds naturally as an ideal of $A{\times}^{piso}_{\alpha}{\Gamma}^+$, such that the quotient is the partial-isometric crossed product of the quotient algebra. We claim that this ideal $\mathcal{I}$ together with the kernel of a natural homomorphism $\phi:A{\times}^{piso}_{\alpha}{\Gamma}^+{\rightarrow}A{\times}^{iso}_{\alpha}{\Gamma}^+$ gives a composition series of ideals of $A{\times}^{piso}_{\alpha}{\Gamma}^+$ studied by Lindiarni and Raeburn.

THE STRUCTURE OF ALMOST REGULAR SEMIGROUPS

  • Chae, Younki;Lim, Yongdo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.187-192
    • /
    • 1994
  • The author extended the small properties of topological semilattices to that of regular semigroups [3]. In this paper, it could be shown that a semigroup S is almost regular if and only if over bar RL = over bar R.cap.L for every right ideal R and every left ideal L of S. Moreover, it has shown that the Bohr compactification of an almost regular semigroup is regular. Throughout, a semigroup will mean a topological semigroup which is a Hausdorff space together with a continuous associative multiplication. For a semigroup S, we denote E(S) by the set of all idempotents of S. An element x of a semigroup S is called regular if and only if x .mem. xSx. A semigroup S is termed regular if every element of S is regular. If x .mem. S is regular, then there exists an element y .mem S such that x xyx and y = yxy (y is called an inverse of x) If y is an inverse of x, then xy and yx are both idempotents but are not always equal. A semigroup S is termed recurrent( or almost pointwise periodic) at x .mem. S if and only if for any open set U about x, there is an integer p > 1 such that x$^{p}$ .mem.U.S is said to be recurrent (or almost periodic) if and only if S is recurrent at every x .mem. S. It is known that if x .mem. S is recurrent and .GAMMA.(x)=over bar {x,x$^{2}$,..,} is compact, then .GAMMA.(x) is a subgroup of S and hence x is a regular element of S.

  • PDF

CHARACTERIZATIONS OF SOME CLASSES OF $\Gamma$-SEMIGROUPS

  • Kwon, Young-In
    • East Asian mathematical journal
    • /
    • v.14 no.2
    • /
    • pp.393-397
    • /
    • 1998
  • The author obtains ideal-theoretical characterizations of the following two classes of $\Gamma$-semigroups; (1) regular $\Gamma$-semigroups; (2) $\Gamma$-semigroups that are both regular and intra-regular.

  • PDF

SEMIGROUP RINGS AS H-DOMAINS

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.19 no.3
    • /
    • pp.255-261
    • /
    • 2011
  • Let D be an integral domain, S be a torsion-free grading monoid such that the quotient group of S is of type (0, 0, 0, ${\ldots}$), and D[S] be the semigroup ring of S over D. We show that D[S] is an H-domain if and only if D is an H-domain and each maximal t-ideal of S is a $v$-ideal. We also show that if $\mathbb{R}$ is the eld of real numbers and if ${\Gamma}$ is the additive group of rational numbers, then $\mathbb{R}[{\Gamma}]$ is not an H-domain.