J. Korea Soc. Math. Ed. Series B: The Pure and Applied Mathematics

4, No. 2 (1997) pp. 131-135

THE FILTERS OF THE ORDERED Γ-SEMIGROUPS

Young In Kwon

ABSTRACT. We give the relation between the semilattice congruence \mathcal{N} and the set of prime ideals of the ordered Γ -semigroup M.

1. Introduction.

In 1986, Sen and Saha([3],[4]) introduced the concept of a Γ -semigroup and obtained some interesting results. In 1987, Kehayopulu[1] introduced the concept of a filter in poe-semigroups. Later Kehayopulu[2] defined the relation \mathcal{N} on a posemigroup S as follows:

$$a\mathcal{N}b \Longleftrightarrow N(a) = N(b),$$

where N(a) is the filter of S generated by $a(a \in S)$ and obtained the Proposition.

Proposition [2]. Let S be a po-semigroup. The following statements hold true:

- (1) N is a semilattice congruence on S.
- (2) $\mathcal{N} = \bigcap \{\sigma_I | I \in \mathcal{I}(S)\}$ where $\mathcal{I}(S)$ is the set of prime ideals of S.

In this paper we proved the same result in a po- Γ -semigroups.

A po- Γ -semigroup (: ordered Γ -semigroup)[5] is an ordered set M at the same time a Γ -semigroup such that

$$a < b \Longrightarrow a \gamma x < b \gamma x$$
 and $x \mu a < x \mu b$

for all $a, b, x \in M$ and for all $\gamma, \mu \in \Gamma$.

Received by the editors July 10, 1997 and, in revised form Dec. 23, 1997.

¹⁹⁹¹ Mathematics Subject Classification. 03G25, 06F35.

Key words and phrases. T Γ -semigroups, po- Γ -semigroups, semilattice congruence, filters, right (left)ideals, prime ideals.

II. Main results.

We recall some definitions.

Definition 2.1 [3]. Let $M = \{a, b, c, \dots\}$ and $\Gamma = \{\alpha, \beta, \gamma, \dots\}$ be two nonempty sets. M is called a Γ -semigroup if

- (1) $a\alpha b \in M$ for $\alpha \in \Gamma$ and $a, b \in M$ and
- (2) $(a\alpha b)\beta c = a\alpha(b\beta c)$,

for all $a, b, c \in M$ and for all $\alpha, \beta \in \Gamma$.

Example 2.2 [3]. Let A and B be two non-empty sets, M the set of all mappings from A to B, and Γ a set of some mappings from B to A. The usual mapping product of two elements of M cannot be defined. But if we take f,g from M and α from Γ then the usual mapping product $f\alpha g$ can be defined. Also we find that $f\alpha g \in M$ and $(f\alpha g)\beta h = f\alpha(g\beta h)$ for $f,g,h \in M$ and $\alpha,\beta \in \Gamma$.

Example 2.3 [3]. Let M be a set of $m \times n$ matrices and Γ a set of some $n \times m$ matrices. If we define $A_{m,n}\alpha_{n,m}B_{m,n}$ the usual product of matrices, then

$$(A_{m,n}\alpha_{n,m}B_{m,n})\beta_{n,m}C_{m,n} = A_{m,n}\alpha_{n,m}(B_{m,n}\beta_{n,m}C_{m,n})$$

where $A_{m,n}, B_{m,n}, C_{m,n} \in M$ and $\alpha_{n,m}, \beta_{n,m} \in \Gamma$. Therefore M is a Γ -semigroup.

Let M be a po- Γ -semigroup. An equivalence relation \Re on M is called congruence if

$$(a,b) \in \Re \Longrightarrow (a\gamma c,b\gamma c) \in \Re, \quad (c\gamma a,c\gamma b) \in \Re$$

for all $\gamma \in \Gamma$ and $c \in M$.

A congruence \Re on M is called *semilattice congruence* if

$$(a\gamma a, a) \in \Re$$
 and $(a\gamma b, b\gamma a) \in \Re$

for all $\gamma \in \Gamma$ and $a, b \in M$.

Definition 2.4. Let M be a po- Γ -semigroup and F a sub- Γ -semigroup. Then F is called a *filter* of M if

- (1) $a, b \in M, a\gamma b \in F(\gamma \in \Gamma) \Longrightarrow a \in F \text{ and } b \in F.$
- (2) $a \in F, a \le c(c \in M) \Longrightarrow c \in F$.

For $A, B \subseteq M$, let $A\Gamma B := \{a\gamma b | a \in A, b \in B, \gamma \in \Gamma\}$.

Definition 2.5. Let M be a po- Γ -semigroup and A a nonempty subset of M. A is called a right(resp.left) ideal of M if

- (1) $A\Gamma M \subseteq A(\text{resp. } M\Gamma A \subseteq A)$.
- (2) $a \in A, b \le a \text{ for } b \in M \Longrightarrow b \in A.$

A is called an *ideal* of M if it is a right and left ideal of M.

Definition 2.6. Let M be a po- Γ -semigroup and T an ideal of M. T is called *prime* if $A, B \subseteq M, A\Gamma B \subseteq T \implies A \subseteq T$ or $B \subseteq T$.

Equivalent Definition:

$$a, b \in M, a\gamma b \in T(\gamma \in \Gamma) \Longrightarrow a \in T \text{ or } b \in T.$$

Throughout this paper, we denote by $M \setminus F$ the complement of F to M.

Lemma. Let M be a po- Γ -semigroup and let $\emptyset \neq F \subseteq M$. The following are equivalent:

- (1) F is a filter of M.
- (2) $M \setminus F = \emptyset$ or $M \setminus F$ is a prime ideal of M.

Proof. (1) \Longrightarrow (2). Let $M \setminus F \neq \emptyset$. Then $M \setminus F$ is a prime ideal of M. In fact: Since $M \setminus F \neq \emptyset$, we take $a \in M, b \in M \setminus F$. If $a\gamma b \in F$ for some $\gamma \in \Gamma$, then, since F is a filter of M, we have $a \in F$ and $b \in F$. It is impossible. Thus we have $a\gamma a \in M \setminus F$ for all $\gamma \in \Gamma$, i.e. $M\Gamma(M \setminus F) \subseteq M \setminus F$. Similarly we get $(M \setminus F)\Gamma M \subseteq M \setminus F$. Let $a \in M \setminus F$ and $b \leq a, b \in M$. If $b \in F$ then, since $b \leq a$ and $b \in F$, F is a filter of M, we have $a \in F$. It is impossible. Thus we get $b \in M \setminus F$. Moreover, let $a, b \in M$ and $a\gamma b \in M \setminus F(\gamma \in \Gamma)$. If $a \in F$ and $b \in F$ then, since F is a sub- Γ -semigroup of M, $a\gamma b \in F$. It is impossible. Hence we have $a \in M \setminus F$ or $b \in M \setminus F$.

(2) \Longrightarrow (1). Let $M \setminus F = \emptyset$. Since M = F, F is a filter of M. Suppose that $M \setminus F$ is a prime ideal of M. Then F is a sub- Γ -semigroup of M. In fact: Let $a, b \in F$. If $a \gamma b \in M \setminus F(\gamma \in \Gamma)$, since $M \setminus F$ is prime, $a \in M \setminus F$ or $b \in M \setminus F$. It is impossible. Thus we have $a \gamma b \in F$ for all $\gamma \in \Gamma$. Let $a, b \in M$ and $a \gamma b \in F$ for any $\gamma \in \Gamma$. If $a \in M \setminus F$ then, since $M \setminus F$ is an ideal of M, $a \gamma b \in M \setminus F$ for all $\gamma \in \Gamma$. It is impossible. If $b \in M \setminus F$, similarly, $a \gamma b \in M \setminus F$ for all $\gamma \in \Gamma$. It is impossible. Thus we have $a \in F$ and $b \in F$. Let $a \in F$ and $a \leq b, b \in M$. If $b \in M \setminus F$ then, since $a \leq b, b \in M \setminus F$ and $a \in F$ and $a \in F$ and $a \in F$. It is impossible. Thus we have $a \in F$. Therefore $a \in F$ is a filter of $a \in F$.

Let M be a po- Γ -semigroup and I a prime ideal of M. We define a relation \Re_I on M as follows:

$$\Re_I = \{(a,b)|a,b \in I \text{ or } a,b \notin I\}.$$

Then \Re_I is a semilattice congruence on M. We denote by N(a) the filter of M generated by $a(a \in M)$. We denote by $\mathcal N$ the equivalence relation on M defined by :

$$\mathcal{N} = \{(a,b)|N(a) = N(b)\}$$

Theorem 2.7. Let M be a po- Γ -semigroup. The following statements hold true:

- (1) \mathcal{N} is a semilattice congruence on M.
- (2) $\mathcal{N} = \bigcap \{ \Re_I | I \in \mathcal{I}(M) \}$

where $\mathcal{I}(M)$ is the set of prime ideals of M.

Proof. (1). Let $(a,b) \in \mathcal{N}, c \in M$. For all $\gamma \in \Gamma$, since $c\gamma a \in N(c\gamma a)$, we have $c, a \in N(c\gamma a)$. Since $a \in N(c\gamma a)$, $N(a) \subseteq N(c\gamma a)$ and thus $b \in N(c\gamma a)$ for all $\gamma \in \Gamma$. Since $c, b \in N(c\gamma a)$, we have $c\mu b \in N(c\gamma a)$ for all $\gamma, \mu \in \Gamma$ and thus $N(c\mu b) \subseteq N(c\gamma a)$ for all $\gamma, \mu \in \Gamma$.

By symmetry, $N(c\gamma a) \subseteq N(c\mu b)$ for all $\gamma, \mu \in \Gamma$. Thus $N(c\gamma a) = N(c\gamma b)$, i.e. $(c\gamma a, c\gamma b) \in \mathcal{N}$. Similarly, $(a\gamma c, c\gamma b) \in \mathcal{N}$ for all $c \in M, \gamma \in \Gamma$. Similarly, $(a\gamma c, b\gamma c) \in \mathcal{N}$ for all $c \in M, \gamma \in \Gamma$.

Let $a \in M$. Since $a\gamma a \in N(a\gamma a)$ for all $\gamma \in \Gamma$ we have $a \in N(a\gamma a)$, and $N(a) \subseteq N(a\gamma a)$ for all $\gamma \in \Gamma$. Since $a \in N(a)$, we have $a\gamma a \in N(a)$, and $N(a\gamma a) \subseteq N(a)$. Then $(a\gamma a, a) \in \mathcal{N}$ for all $\gamma \in \Gamma$.

Let $a, b \in M$. Since $a\gamma b \in N(a\gamma b)$ for all $\gamma \in \Gamma$, we have $a, b \in N(a\gamma b)$ and $b\gamma a \in N(a\gamma b)$ for all $\gamma \in \Gamma$. Thus we get $N(b\gamma a) \subseteq N(a\gamma b)$ for all $\gamma \in \Gamma$. By symmetry, $N(a\gamma b) \subseteq N(b\gamma a)$. Thus we have $(a\gamma b, b\gamma a) \in \mathcal{N}$.

(2). Let $(a,b) \in \mathcal{N}$ and $I \in \mathcal{I}(M)$. Let $(a,b) \notin \Re_I$. Then $a \notin I$ and $b \in I$ or $a \in I$ and $b \notin I$. Let $a \notin I$ and $b \in I$. Then $\emptyset \neq M \setminus I \subseteq M$ and $a \in M \setminus I$. Since $M \setminus (M \setminus I) = I$, $M \setminus (M \setminus I)$ is a prime ideal of M. By the Lemma, $M \setminus I$ is a filter of M. Since $a \in M \setminus I$, we have $N(a) \subseteq M \setminus I$ and thus $b \in M \setminus I$. It is impossible. Similarly, from $a \notin I$ and $b \in I$, we get a contradiction. Thus we have $\mathcal{N} \subseteq \bigcap_{I \in \mathcal{I}(M)} \Re_I$.

Conversely, let $(a,b) \in \Re_I$ for all $I \in \mathcal{I}(M)$. If $(a,b) \notin \mathcal{N}$, then $a \notin N(b)$ or $b \notin N(a)$. In fact, if $a \in N(b)$ and $b \in N(a)$, then $N(a) \subseteq N(b)$ and $N(b) \subseteq N(a)$ and so $(a,b) \notin \mathcal{N}$. Let $a \notin N(b)$. Then $a \in M \setminus N(b)$ and thus $M \setminus N(b) \neq \emptyset$. Since

N(b) is a filter of M, by the Lemma, $M\backslash N(b)$ is a prime ideal of M. Therefore we have $M\backslash N(b)\in \mathcal{I}(M), a\in M\backslash N(b)$ and $b\notin M\backslash N(b)$, i.e. $M\backslash N(b)\in \mathcal{I}(M)$ and $(a,b)\notin \Re_{M\backslash N(b)}$. We get a contradiction. Similarly, from $b\notin N(a)$, we have a contradiction.

REFERENCES

- N. Kehayopulu, On weakly commutative poe-semigroups, Semigroup Forum 34 (1987), 367-370.
- 2. ______, Remark on ordered semigroups, Math.Japon. 35 (1990), 1061-1063.
- 3. M. K. Sen and N. K. Saha, On Γ-semigroup I, Bull. Calcutta Math. Soc. 78 (1986), 180-186.
- 4. N. K. Saha, On Γ-semigroup II, Bull. Calcutta Math. Soc. 79 (1987), 331-335.
- 5. Y. I. Kwon and S. K. Lee, Some special elements in ordered Γ-semigroups, Kyungpook Math. J. 35(3) (1996), 679-685.

DEPARTMENT OF MATHEMATICS, COLLEGE OF EDUCATION, GYEONGSANG NATIONAL UNIVERSITY, CHINJU 660-701, KOREA.

E-mail address: yikwon@nongae.gsnu.ac.kr