CHARACTERIZATIONS OF SOME CLASSES OF Γ -SEMIGROUPS

YOUNG IN KWON

ABSTRACT. The author obtains ideal-theoretical characterizations of the following two classes of Γ -semigroups; (1) regular Γ -semigroups; (2) Γ -semigroups that are both regular and intra-regular.

In 1981, M. K. Sen([7]) introduced the concept of Γ -semigroup and M. K. Sen and N. K. Saha ([8,9]) obtained some interesting results S. Lajos ([5,6]) gave some characterizations of regular and/or intraregular semigroups. In this paper we proved some characterizations of Γ -semigroup by similar methods.

Let M and Γ be non-empty sets. Then M is called a Γ -semigroup if the following conditions hold :

(1) $a\alpha b \in M$, and $\alpha a\beta \in \Gamma$ for all $\alpha, \beta \in \Gamma$ and $a, b \in M$;

(2) $(a\alpha b)\beta c = a(\alpha b\beta)c = a\alpha(b\beta c)$ for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$.

For $A, B \subseteq M$, let $A\Gamma B = \{a\gamma b | a \in A, b \in B, \gamma \in \Gamma\}$.

EXAMPLE. Let M be the set of all integers of the form 4n+1 where n is an integer and let Γ be the set of all integers of the form 4n+3. If $a\alpha b$ is $a + \alpha + b$ and $\alpha a\beta$ is $\alpha + a + \beta$ (usual sum of the integers) for all $a, b \in M$ and $\alpha, \beta \in \Gamma$, then M is a Γ -semigroup.

DEFINITION 1 [8,9]. An element a of a Γ -semigroup M is called regular if $a \in a\Gamma M\Gamma a$. A Γ -semigroup M is called regular if every element of M is regular.

Received October 7, 1998.

¹⁹⁹¹ Mathematics Subject Classification 20M99, 20M17

Key words and phrases. Γ -semigroup, right(left) ideal, quasi-ideal, bi-ideal, regular element, intra-regular element.

DEFINITION 2. A Γ -subsemigroup T is called *intra-regular* if, for all $a \in T$, there exist $x, y \in T$ such that $a \in x \Gamma a \Gamma a \Gamma y$.

DEFINITION 3 [8,9]. Let M be a Γ -semigroup. A non-empty subset B of M is said to be a Γ -subsemigroup of M if $B\Gamma B \subseteq B$.

DEFINITION 4. Let M be a Γ -semigroup. A nonempty subset I of M is said to be right(left) ideal of M if $I\Gamma M \subseteq I(M\Gamma I \subseteq I)$.

If I is both a right ideal and a left ideal then we say that I is an ideal of M.

DEFINITION 5. A non-empty subset Q of the Γ -semigroup M is called a quasi-ideal of M if $Q\Gamma M \cap M\Gamma Q \subseteq Q$.

Every left (resp. right) ideal is a quasi-ideal Also every ideal is a quasi-ideal.

DEFINITION 6. Let B be a non-empty subset of a Γ -semigroup M. The set B is called a *bi-ideal* of M if $B\Gamma M\Gamma B \subseteq B$

Every quasi-ideal is a bi-ideal.

First we give a new characterization of regular Γ -semigroups.

THEOREM 7. A Γ -semigroup M is regular if and only if the inclusion

 $(1) \qquad B \cap I \cap L \subseteq B\Gamma I \Gamma L$

holds for every bi-ideal B, every left ideal L, and every two-sided ideal I of M, provided that the intersection $B \cap I \cap L$ is non-empty.

Proof. Let M be a Γ -semigroup and let a be an element of $B \cap I \cap L$, where B is a bi-ideal, L is a left ideal, and I is a two-sided ideal of M. Then there exists an element x in M such that

$$a = a\gamma x\mu a$$

= $a\gamma x\mu (a\gamma x\mu a)$
= $a\gamma x\mu a\gamma x\mu a\gamma x\mu a$
= $(a\gamma x\mu a)\gamma (x\mu a)\gamma (x\mu a)$
 $\in B\Gamma I\Gamma L$

for some γ, μ in Γ . Hence the condition (1) holds.

Conversely, if M is a Γ -semigroup with property (1), then we get

$$(2) \qquad R \cap M \cap L \subseteq R \Gamma M \Gamma L \subseteq R \Gamma L$$

for every left ideal L and every right ideal R of M. Therefore M is regular, indeed.

THEOREM 8. A Γ -semigroup M is both regular and intra-regular if and only if the inclusion

$$(3) \qquad B \cap L \subseteq B\Gamma L\Gamma B$$

holds for every bi-ideal B and every left ideal L of M with $B \cap L \neq \emptyset$

Proof. Let M be a regular and intra-regular Γ -semigroup. Then for every element a of M there exist elements $x, y, z \in M$ such that

$$(4) \qquad a=a\gamma x\mu a=y\delta aeta a
u z$$

for some $\gamma, \mu, \delta, \beta$ and $\nu \in \Gamma$.

If $a \in B \cap L$, where B is a bi-ideal, L is a left ideal of M, we have elements x, y, z in M such that

(5)
$$a = (a\gamma x)\mu a = a\gamma x\mu (a\gamma x\mu a)$$
$$= a\gamma x\mu (y\delta a\beta a\nu z\gamma x\mu a)$$
$$= (a\gamma x\mu a)\gamma (x\mu y\delta a)\beta (a\nu z\gamma x\mu a)$$
$$\in B\Gamma L\Gamma B.$$

Conversely, if M is a Γ -semigroup with property (3), then (3) implies

$$(6) L \cap R \subseteq R\Gamma L\Gamma R \subseteq L\Gamma R$$

for every left ideal L and every right ideal R of M. By Theorem 2 in [5], M is intra-regular. In this case of L = M, the inclusion (3) implies

$$(7) \qquad B \subseteq B\Gamma M \Gamma B$$

for every bi-ideal B of M. Hence we get $B = B\Gamma M\Gamma B$, and thus M is a regular Γ -semigroup (cf. [5], Theorem 1).

Y. I. KWON

THEOREM 9. For a Γ -semigroup M the following conditions are pairwise equivalent:

(1) M is regular and intra-regular.

(2) For every bi-ideal B and every left ideal L of M,

 $B \cap L \subseteq B\Gamma L\Gamma B.$

(3) For every bi-ideal B and every right ideal R of M,

 $B \cap R \subseteq B\Gamma R\Gamma B$.

(4) For every left ideal L and every quasi-ideal Q of M,

 $L \cap Q \subseteq Q\Gamma L\Gamma Q.$

(5) For every right ideal R and every quasi-ideal Q of M_{γ}

 $Q \cap R \subseteq Q\Gamma R \Gamma Q.$

(6) For every bi-ideal B and every quasi-ideal Q of M,

 $B \cap Q \subseteq B \Gamma Q \Gamma B.$

(7) For every bi-ideal B and every quasi-ideal Q of M,

 $B \cap Q \subseteq Q \Gamma B \Gamma Q.$

The Proof of this result is similar to that of Theorem 8, and we omit it.

REMARK. It is easy to see Theorem 7 remain true with generalized bi-ideal or quasi-ideal instead of bi-ideal.

References

 N. Kehayopulu, On weakly commutative poe-semigroups, Semigroup Forum 34 (1987), 367-370

[2] _____, Remark on ordered semigroups, Math. Japonica 35 (1990), 1061-1063

396

Characterizations of some classes of Γ -semigroups

- [3] Y I Kwon, On characterizations of certain classes of Γ -semigroups, East Asian Math. Communicational 1 (1998), 85-88.
- [4] Y. I Kwon and S K Lee, Some special elements in ordered Γ -semigroups, Kyungpook Mathematical Journal 35 No. 3 (1996), 679-685
- [5] S Lajos, On the characterization of completely regular semigroups, Math Japon 20(Special Issue) (1975), 33-35.
- [6] _____, Characterizations of some classes of semigroups, Math. Japon 40 No.3 (1994), 601-602.
- [7] M K Sen, On Γ -semigroup, Proceedings of the International Conference on Algebra and it's application Decker Publication, New York, 301 (1981).
- [8] M K Sen and N K Saha, On Γ -semigroup II, Bull Cal Math Soc 79 (1987), 331-335

Department of Mathematics College of Education Gyeongsang National University Chinju 660-701, Korea *E-mail* yikwon@nongae.gsnu.ac.kr