Purpose: Blockchain technology suggests ways to solve the problems in the existing industry. Among them, Cryptocurrency system, which is an element of Blockchain technology, is a very important factor for operating Blockchain. While Blockchain cryptocurrency has attracted attention, studies on cryptocurrency prices have been mainly conducted, however previous studies mainly conducted on Bitcoin prices. On the other hand, in the context of the creation and trading of various cryptocurrencies based on the Blockchain system, little research has been done on cryptocurrencies other than Bitcoin. Hence, this study attempts to find variables related to the prices of Dash, Litecoin, and Monero cryptocurrencies using machine learning techniques. We also attempt to find differences in the variables related to the prices for each cryptocurrencies and to examine machine learning techniques that can provide better performance. Research design, data, and methodology: This study performed Dash, Litecoin, and Monero price prediction analysis of cryptocurrency using Blockchain information and machine learning techniques. We employed number of transactions in Blockchain, amount of generated cryptocurrency, transaction fees, number of activity accounts in Blockchain, Block creation difficulty, block size, umber of created blocks as independent variables. This study tried to ensure the reliability of the analysis results through 10-fold cross validation. Blockchain information was hierarchically added for price prediction, and the analysis result was measured as RMSE and MAPE. Results: The analysis shows that the prices of Dash, Litecoin and Monero cryptocurrency are related to Blockchain information. Also, we found that different Blockchain information improves the analysis results for each cryptocurrency. In addition, this study found that the neural network machine learning technique provides better analysis results than support-vector machine in predicting cryptocurrency prices. Conclusion: This study concludes that the information of Blockchain should be considered for the prediction of the price of Dash, Litecoin, and Monero cryptocurrency. It also suggests that Blockchain information related to the price of cryptocurrency differs depending on the type of cryptocurrency. We suggest that future research on various types of cryptocurrencies is needed. The findings of this study can provide a theoretical basis for future cryptocurrency research in distribution management.