한국연소학회:학술대회논문집
The Korean Society of Combustion (KOSCO)
- 기타
Domain
- Materials > Plastic Deformation Process/Powders
2002.11a
-
Simultaneous PIV and OH PLIF measurements are used for shear strain rates and flame locations, respectively. It is believed that the shear strain rates represent flow characteristics such as turbulence intensity and the OH intensity indicates the flame characteristics such as burning velocities. However, these are still lack of geometric information, which may be very important to flame quenching Hence, fractal dimensions 'Df) of the OH images are adopted as an additional information. Finally, the flame structure diagram proposed in this research has three parameters, which consist of strain rates, OH intensities and fractal dimensions. The results show that this diagram classifies turbulent premixed flames more effectively based on flame structures. The regime of weak turbulence is limited to narrow strain ranges and has the fractal dimension of about 2 In the regime of moderate turbulence, OH intensities increase as strain rates increase and the values of fractal dimensions are 1.8 Df 1.95. The regimes of thickened reaction and flame extinction (quenching) show bell-shaped and their values of fractal dimensions are 1.5 Df 1.7 and 0.9 Df 0.6, respectively.
-
The first-order conditional moment closure (CMC) model is applied to
$CH_4$ /Air turbulent jet diffusion flames(Sandia Flame D, E and F). The flow and mixing fields are calculated by fast chemistry assumption and a beta function pdf for mixture fraction. Reacting scalar fields are calculated by elliptic CMC formulation. The results for Flame D show reasonable agreement with the measured conditional mean temperature and mass fractions of major species, although with discrepancy on the fuel rich side. The discrepancy tends to increase as the level of local extinction increases. Second-order CMC may be needed for better prediction of these near-extinction flames. -
Recent studies of a triple flame suggested that the presence of triple point (triple line in this planar configuration) could explain the mechanisms of stable fuel-lean premixed flames with equivalence ratio lower than the flammability limit. In the present study, for better understanding of the stability mechanisms of fuel rich-lean premixed flames, the fuel-rich flames were replaced with hot coils that will provide heat flux into the fuel-lean flames. It is found that the fuel-lean premixed flames could be stabilized without any triple point (triple line): however, the equivalence ratio limit for stable fuel-lean flame in this case is higher than that of the present work with the presence of fuel-rich flames. These results demonstrate that heat flux coming from fuel-rich flames should be considered in order to properly understand the roll of a triple flame for stable fuel rich-lean flames.
-
For the better understanding of the stability of turbulent combustion, more researches on extinction and re-ignition are needed. Flame interactions in non-premixed flame have also not been greatly researched. We made a hybrid twin jet flame, the combinations of diffusion flame and partially-premixed diffusion flame, in a twin jet counterflow configuration. The extinction limits of a crossed twin jet counterflow have been extended in comparison with those of a one-dimensional counterflow because of flame interactions through heat transfer and joint ownership of various radicals. Besides, we have obtain ignition
$Damk\"{o}hler$ number by experimental method without external ignition source using the extinction characteristic in a crossed twin jet counterflow flame. From results, we can identify the hysteresis between extinction and ignition$Damk\"{o}hler$ number in S-curve. -
Unsteady behaviors of counterflow flame were studied experimentally in opposing jet counterflow burner using diluted methane. To generate the unsteadiness on the flame, the counterflow diffusion flame was perturbed by velocity changes made by the pistons installed on both sides of the air and fuel stream. The velocity changes were measured by Hot wire and Laser Doppler Velocimetry, and the flame behaviors were observed by High speed ICCD and ICCD. In this investigation, the spatial irregularity of the strain rate caused the flame to extinguish from the outside to the axis during the extinction, and we found the following unsteady phenomena. First, the extinction strain rates of unsteady cases are much larger than those of the steady ones. Second, the extinction strain rates become larger as the slope of the change of the strain rate increases. Third, the unsteady extinction strain rates become smaller with the increase of the initial strain rate.
-
Oxygen has been used extensively in various industries for many years. Despite earlier successful attempts to use oxygen in industrial combustion furnaces, its full theoretical researches have only recently begun to be realized. The aim of this study is to investigate the effect of oxygen enriched combustion. This paper analyzes the characteristics of oxygen enriched combustion, and deals with the experimental investigation of the flame temperature and NOx concentration in exhaust gas. The flame temperature, concentration of exhaust gas were measured and flame configurations were photographed according to the variation of oxygen concentrations in oxidizer.
-
A two-dimensional direct numerical simulation is performed to investigate the formation characteristics of a single vortex interacting with
$CH_4/N_2$ -Air counterflow nonpremixed flame. The numerical method was based on a predictor-corrector scheme for a low Mach number flow. The detailed transport properties and a 16-step augmented reduced mechanism are adopted in this calculation. The budgets of the vorticity transport equation arc examined to reveal the mechanisms leading to the formation, evolution and dissipation of a single vortex interacting with counterflow nonpremixed flame. It is found that the stretching term, which depends on the azimuthal component of vorticity, and radial velocity, mainly generates vortieitv in non-reacting and reacting flows. The viscous and baroclinic torque term destroy the vorticity in non-reacting flow. In addition, the baroclinic torque term due to density and pressure gradient generates vorticity, while viscous and the volumetric expansion terms due to density gradient destroy vorticity in reacting flow. -
This paper describes the results of a series of experiments executed by using two pilot-scale oxv-fuel burners are designed for maximum capacity of 50,000 kacl/hr, 300,000 kcal/hr and installed in the test furnace. The effects of turn-down ratio, excess oxygen ratio, nozzle exit velocity, injection angle, swirl vane angle and inlet oxygen temperature on the combustion characteristic are investigated. Temperature distributions are measured using R-type and Molybdenum sheathed C-type thermocouple. The results showed that maximum temperature and mean temperature increase with the increase of turn-down ratio and inlet oxygen temperature. The maximum flame temperature was increased about 35% compared to the case of equivalent air operated condition. In addition, Optimum excess oxygen ratio and nozzle characteristics are obtained for this oxy-fuel glass melting furnace.
-
Catalytic combustion known as one of the traditional oxidation methods of VOC gas is restricted to its applicable fields because of its reaction characteristics. But recently innovative improvement of catalytic endurance makes its applicable range broader from MEMs to industrial power generation. Therefore, control technologies based on the catalytic combustion characteristics are researched and developed dynamically. Especially, the stable control of catalytic combustion is an essential factor in a view of maximizing its efficiency. In this research, the fuel equivalence ratio and the preheating temperature of mixture gas is controlled by catalytic combustion system enhanced in heat transfer with high temperature heat exchanger. As a result, the combustion characteristics of system was investigated, and both passive and active control type were compared and analyzed.
-
Lee, Kyung-Won;Chung, Nam-Jo;Ryu, In-Soo;Cho, Sung-June;Seo, Yong-Seog;Kang, Sung-Kyu;Song, Kwang-Sup;Chun, Kwang-Min 71
The characteristics of the catalytically supported combustion with Pd and Pd/Pt based catalyst using the bench-scaled high pressure combustor have been investigated up to 5atm. This study aimed to investigate combustion characteristics of the stable flame attached to the exit of catalyst bed and NOx emissions with respect to the position of axial and radial direction in the combustor. NOx emissions were increased along the axial distance after the catalyst bed exit and radially decreased from the center to the wall of the combustor. At the higher pressure, the NOx emission decreased slightly due to the lower flame temperature in the combustor at the high pressure. -
It's well known that with the increase of preheated air temperature NOx is increasing ,while the energy consumption is decreasing. In this study the experimental study was carried out to find out a new method breaking the above-mentioned old concept. From the variation of configuration of gas nozzle and hot test on the temperature distribution and NOx, it was found out that the reduction of NOx was due to the effect of internal gas recirculation, which will be caused by air emitting velocity from burner nozzle.
-
A hybrid De- NOx technique of non-thermal plasma and
$NH_3$ SCR process has been investigated to remove NOx from 300 hp marine engine exhaust under the low temperature conditions, i.e.$100-200^{\circ}C$ . Fundamental investigation with Diesel-like simulant gas was also conducted. The performance of the present technique has been demonstrated by treating real diesel exhaust gases, in which high contents of soot, water vapor,$SO_2$ , NOx, and unburned HC are included. Detailed engineering data for evaluating the feasibility of the technique are provided in the present investigation. -
The conventional regenerative system has a high thermal efficiency as well as energy saving using the high preheated combustion air. in spite of these advantages, it can not avoid high nitric oxide emissions. Recently, flameless combustion has received much attention to solve these problems. In this research, numerical analysis is performed for flow-combustion phenomena in the self regenerative burner. In this analysis we used Fluent 6.0 code. the that is developed for commercial use, Methane gas is used as a fuel and two-step reaction model for methane and Zeldovich mechanism for NO generation are used. the velocity of the preheated combustion air is used as a parameter and we analyze the characteristics of flow-field, temperature distributions and NO emissions. Due to the increased recirculation rate, the maximum temperature of flame is significantly increased and NOx emissions is reduced
-
The objective of this research is to determine generally applicable design principles for the development of internally staged combustion devices. Utilizing a triple annulus combustor, air staged commercial propane flame configuration are studied. For this triple air staged combustor, the angular momentum weighted by it's swirl number and air distribution ratio was observed to be the critical criteria. An internal recirculation zone which develops on the centerline of the flame immediately downstream of the burner entraps the fuel into a fuel rich eddy. Then sufficient heat must he transferred from the flame via radiation to the chamber heat transfer surfaces, such that when the second air is introduced, peak flame temperatures are suppressed. It is experimentally found out that the total NOx emission level in this type of burner is lower than 0.75g/kg.
-
The distribution of volume fraction, mean diameter and number density of soot particles are measured quantitatively in a co-flow ethylene diffusion flame using a simultaneous LII/LIS measurement technique. The LII/LIS system and the measured values are, respectively, calibrated and evaluated by comparing to the informations obtained from laser light. extinction/scattering experiments, LII signal shows some sensitivity to the laser light intensity when laser power density exceeds a certain value(threshold). It is also found that there is an optimal laser intensity and a delay time in order to obtain the best result using the simultaneous LII/LIS measurement technique.
-
이중동축류 버너를 사용하여 에틸렌/프로판 및 에틸렌/메탄 혼합 연료의 매연생성 상승효과와 관련된 매연생성 메커니즘을 이해하기 위한 실험을 수행하였다. 매연체적분율, 광산란신호 및 PAH 형광신호를 측정한 결과 다음을 알 수 있었다. 에틸렌/프로판 혼합연료에서 연료공급 위치의 변화에 따른 매연생성특성의 변화는 대부분 synergistic 효과와 관련되는 것임을 알 수 있었다. 그러나 에틸렌/메탄 혼합연료의 경우 연료공급의 위치변화가 매연생성에 크게 영향을 주지 않았다. PAH 분포는 synergistic 효과에 의한 매연 생성 특성의 변화와 일관성이 없는 것이 관찰되었다. 따라서 synergistic 효과에 대한 PAH의 역할에 대한 이해가 필요함을 알 수 있었다.
-
From the view of the environmental protection against the use of fossil fuels, a great of efforts have been exerted to find an alternative energy source. Hydrogen may become an alternative. However the product species of the hydrogen flame is only
$H_2O$ , which emits only non-luminous radiation so the radiation from it is much smaller than that for a hydrocarbon flame. In this study, the authors designed and fabricated a laboratory scale test furnace to study thermal characteristics of hydrogen-air diffusion flame. In addition, the effects of addition of reacting as well as non-reacting solid particles were experimentally investigated. Among the total heat flux to the wall, about 75% was occupied by radiation while 25 % by convection. When the aluminum oxide ($Al_2O_3$ ) particles were added, the radiative heat flux was reduced due to heat blockage effects. On the other hand, the total as well as the radiative heat flux was increased when the carbon particles were seeded, since the overall temperature increased. The effects of swirl and excess air ratio were also examined. -
Experimental investigation of the interaction between dual spray formed by swirl type injector was conducted. Experimental parameter was fuel temperature, varied in the range from
$-20^{\circ}C$ to$120^{\circ}C$ . Measuring parameter were vertical distance from injector tip to patternator and gap between injectors. Volumetric distiribution and SMD were measured for the various combination of parameters. The results of present study show that the arithmetic sum of each of spray is not equal to dual spray, but it is equal above specific fuel temperature. As the increases of fuel temperature, SMD decreases and becomes more uniform. As the increases of gap between injectors, fuel volume and SMD at collision area increases, but penetrated fuel decreases. -
A promising new approach to achieve low pollutants emission and improvement of flame stabilities is tested experimentally using a hybrid cyclone jet combustor employing both premixed and diffusion combustion mode, Three kind of nozzles are used for LNG(Liquified Natural Gas) as a fuel. The combustor is operated by two method, One is ATI(Air Tangential Injection) mode, generated swirl flow by air as general swirl combustor, and the other is PTI(Premixed gas Tangential Injection) mode, The PTI mode consists of diffusion flame of axial direction and premixed cyclone flame of tangential direction in order to stabilized the diffusion flame. The results showed that the stable region of the PTI mode is more larger than the ATI mode. In addition, the reduction of NOx emission in PTI mode, as compared with that for the ATI mode is at least 50% in stable region. Also, even using the low calorific fuel as
$CO_2$ -blended gas, the cyclone jet combustor has high performance of flame stability. -
Using the CFD method, we investigated the combustion characteristics of grate-rotary kiln incinerator through the residence time, path line of flow and distributions of temperature and CO mass fraction according to the shape of mixing chamber and the existence and nonexistence of baffle at the exit of bypass duct. The results show that the now mixing and residence time could be variable according to the shape of mixing chamber and baffle, and we could know the temperature in the mixing chamber could increase too high if the combustion process on the grate retarded.
-
This paper discusses hydrodynamic characteristics of cold circulating fluidized bed(CFB) in different solid mass inventories. Operating parameters of solid mass inventory, primary air and J-valve fluidizing air were varied to find out the effect on the flow fludization pattern. Experimental measurements were made in a 3m tall CFB that has 0.05m riser diameter and black silica-carbonate of particle sizes from
$100{\mu}m$ to$500{\mu}m$ were employed as the bed material. The operating conditions of superficial gas velocity and J-valve fluidizing velocity were in the ranges of 1.39~3.24 m/s and 0.139~0.232 m/s respectively. The axial solid fraction and solid circulation rate of CFB were observed and compared with modelling through IEA-CFBC Model and commercial CFD code. -
In order to evaluate the devolatilization models of pulverized coal, various devolatilization models are examined for the numerical analysis of Drop Tube Furnace.The results of analysis are compared with the experimental results. A numerical study was conducted to explore the sensitivities of the predictions to variation of the model parameters. It helps to elucidate the source of the discrepancies. Three different wall temperature conditions of the DTF, 1100, 1300 and
$1500^{\circ}C$ were considered in this analysis. Two fuels are U.S.A. Alaska coal and Australia Drayton coal. The results of analysis with constant rate model, single kinetic rate model and two competing rate modes well presented fast volatile matter release in the early devolatilization. However, in the latter devolatilization they did not coincide with experimental results which presented tardy volatile matter release on account of pyrolysis of high molecular substance. On the other hand, the results of analysis with DAEM(Distribute Activation Energy Model) coincided with experiment al results in overall devolatilization. -
A laboratory scale thermogravimetric analyser was developed to investigate the combustion characteristics of selected solid fuel(wood) in the highly preheated air. The aims are to introduce in the means of experimental determination of the solid fuel particle characteristics through the combustion process in the environment of highly preheated air. A nearly single particle combustion condition was reproduced in a thermogravimetric analyser and regenerating combustor. For a fuel particle whose characteristic length was a few centimeter, the sub-processes of fuel drying, pyrolysis as well as the combustion of residual carbon were identified. Fluidized environment of carrier gas was selected as the major parameter which affect the combustion process.
-
The present study is mainly motivated to investigate the vaporization, autoignition, and combustion of liquid fuel spray injected into high pressure environment. In order to represent these phenomena realistically, discrete droplet model (DDM) which simulates the spray using finite number of representative droplets was adopted for detailed consideration of the finite rate of uansport between liquid and gas phases. The Eulerian-Lagrangian formulation was used to analyze the two-phase interactions. The high pressure vaporization model was applied using the thermodynamic and phase equilibrium at droplet surface. The high pressure effect as well as high temperature effect was considered in the calculation of liquid and gas properties. The characteristics of spray in high pressure environment were explained by comparison with normal pressure case.
-
Computations were performed to investigate the flow, temperature and pollutants in two stage heavy-oil combustion burner. The burner geometry and flow conditions were provided by a burner company. The goal of the study is to understand combustion phenomena according to each air inlet's velocity, excessive air ratio and air temperature through CFD. Air flow rates at two inlets are adjusted by a damper inside a burner. Here, injection conditions of liquid fuel are kept constant throughout all simulations. This assumption is made in order to limit the complexity of oil combustion though it may cause some disagreement. The final goal of this research is to design a Low-NOx heavy oil combustion burner through comparison between computational study and experimental ones. Besides experiments, simulation works can give us insights into heavy oil combustion and help us design a Low NOx burner while saving time and cost. The computational study is based on k-e model, P-1 radiation model(WSGGM) and PDF, and is implemented on a commercial code, FLUENT.
-
It has been well acknowledged that intake system plays great role in the performance of reciprocating engine. Well-designed intake system is expected to not only increase engine efficiency but also decrease engine emission, which is one of the most urgent issues in the automotive society. Thorough understanding of the flow in intake system helps great to design adequate intake system. Even though both experimental and numerical methods are used to study intake flow, numerical analysis is more widely used due to its merits in time and economy. Intake system of In-line 6-Cylinder CNG engine was chosen for the analysis ICEM CFD HEXA was used to create 3-D structured grid and FIRE code was used for the flow analysis in the intake system. Due to the complexity of the geometry standard
${\kappa}-{\varepsilon}$ turbulence model was applied. Numerical analysis was performed for various inlet and outlet boundary conditions under both steady and transient flow. Inlet mass flow rate and outlet pressure variation were changing parameters with respect to engine speed. Flow parameters, such as velocity, pressure and flow distribution, were evaluated to provide adequate data of this intake system. -
Spark plug ionization signal could be useful in an internal combustion engine as a feedback signal for combustion diagnostics such as misfire detection, knocking detection and lambda control, but the signal has high level of cyclic fluctuation in an internal combustion engine due to residual gas, pressure, temperature, mixture composition in the spark gap. Because of this reason it is very difficult to apply ion signal to commercial engine control. In this Study, a correlation between A/F and spark plug ionization signal was studied in a constant volume chamber. Constant volume chamber with gas phase fuel(Propane) has homogeneous fuel composition , no mixture flow, same pressure and temperature on each test. The results show that mean chemi-ion signal has the highest correlation with A/F and intial pressure change has on effect on the thermal-ion signal and not on chemi-ion signal.
-
A theoretical and experimental study on the combustion process in a constant volume micro combustor is described. Unlike in a macro scale constant volume combustor, the heat loss to the wall plays a major role in flame propagation in a micro micro combustor. In order to analyze the effect of heat loss on combustion phenomena, pressure transition from ignition was measured. A number of cylindrical micro combustors with different diameter and depth were used for experiment to study the effect of length scales and shape factor. The diameter of combustor ranged from 7.5mm to 22.5 mm and the height of cylinder was from 1mm to 4mm. Initial pressure was also varied for the experiment. The diagnostic methods were severely limited due to the size of the apparatus and uncertainties of certain quantities to be measured in a small-scale environment. An analytical method to derive physical quantities that are essential for performance prediction from the pressure measurements is described.
-
Micro catalytic reactors are alternative propulsion device that can be used on a nano satellite. When used with a monopropellant,
$H_2O_2$ , a micro catalytic reactor needs only one supply system as the monopropellant reacts spontaneously on contact with catalyst and releases heat without external ignition, while separate supply lines for fuel and oxidizer are needed for a bipropellant rocket engine. Additionally,$H_2O_2$ is in liquid phase at room temperature, eliminating the burden of storage for gaseous fuel and carburetion of liquid fuel. In order to design a micro catalytic reactor, an appropriate catalyst material must be selected. Considering the safety concern in handling the monopropellants and reaction performance of catalyst, we selected hydrogen peroxide at volume concentration of 70% and perovskite redox catalyst of lantanium cobaltate doped with strondium. Perovskite catalysts are known to have superior reactivity in reduction-oxidation chemical processes. In particular, lantanium cobaltate has better performance in chemical reactions involving oxygen atom exchange than other perovskite materials. In the present study, a process to prepare perovskite type catalyst,$La_{0.8}Sr_{0.2}CoO_3$ , and measurement of its propellant decomposition performance in a test reactor are described.