Proceedings of the Korean Society of Medical Physics Conference (한국의학물리학회:학술대회논문집)
Korean Society of Medical Physics
- Annual
Domain
- Physics > Interdisciplinary Physics
2002.09a
-
This paper describes research activities at National Institute of Radiological Sciences (NIRS), Japan in development of radiological apparatus, which cover 4-dimensinal (4D) CT, next-generation PET and several progresses in heavy-ion irradiation system at HIMAC (Heavy Ion Medical Accelerator in Chiba).
-
Intensity modulated radiotherapy (IMRT) is an advanced but expensive form of 3-dimensional conformal radiation therapy technique. While the initial clinical data appear to be promising for some treatment sites, the cost effectiveness of the treatment modality has yet to be justified by long-term clinical outcome. This presentation reviews the potential efficacy and limitation of IMRT in respect of the practicality, dosimetry, and resource aspects. It tries to explore and draw conclusions on the strategies for using this sophisticated and expensive treatment technique from AFOMP perspective.
-
Tabushi, Katsuyoshi;Endo, Masahiro;Ikeda, Hiroshi;Uchiyama, Yukio;Hoshina, Masao;Nakagawa, Keiichi;Sakai, Kunio 11
Accidental overexposures by radiotherapy have gathered attention recently in Japan. The widely publicized accidents have occurred at the government official benefit society hospital and at the hospital affiliated to a medical school. The accident at the government official benefit society hospital occurred when one of two existing accelerators was renewed. A radiotherapy planning system was also introduced at that time. Then treatment planning for the old and the new linear accelerator was performed using the system. There were variations in wedge factors for the 30 degrees wedge filter between the old and the new linear accelerator. That is, the difference in the structure of the wedge filter (30 degrees) resulted in variations of the wedge factors between both accelerators. In order to keep strength, a lead board was backed to the lead wedge filter for the new linear accelerator, whereas the wedge filter for the old one was made of the iron. The X-ray attenuation of the iron wedge filter is smaller than that of the lead wedge filter. The basic beam data of the old linear accelerator, however, wasn't delivered properly between the user and the maker. Then, the accident took place because the same wedge factor was used for the old and the new linear accelerator. On the other hand, the accident which occurred at the university hospital was brought about by the input mistake in initialization of the computer system when a linear accelerator was introduced. The input mistake was found when the software of the system was updated. If the dose had been measured and confirmed adequately, the accidents could have been prevented in both cases. -
Recent topics on quality assurance (QA) of X-ray diagnosis in Japan were reported in this presentation. These were related to mass screening mammography (MMG), lung screening CT (LSCT), skin injury caused by interventional radiology (IVR) and traceable system of dosimeters for x-ray diagnosis. In these successful stories, the author would like to stress the cooperation of all the medical am: clinical staff including medical doctors, radiological technologists, medical physicists, manufacturers of medical devices and others.
-
Last year, a three-year research program was started in order to establish an external audit system to radiotherapy QA in Japan. It consists of questionnaire surveys, mailed (off-site) dosimetry and visited (on-site) dosimetry at radiotherapy facilities in Japan. The first questionnaire was sent to all Japanese radiotherapy facilities in October 2001, surveying basic QA procedures at each facility. 628 answers were returned with the return rate of 87%. In February 2002, the second questionnaire was sent. Off-site and on-site dosimetry have been tested in several facilities, and will be started soon. We anticipates that this program will gradually grow to a radiotherapy quality control center similar to Radiological Physics Center at MD Anderson Hospital.
-
The importance of accurate dose delivery in radiotherapy is well documented. Studies have shown that a mere 5% deviation of the prescribed dose can produce an undesirable treatment outcome. Uncertainties in the dose delivery can arise at different stages of the radiotherapy process. Therefore, a good quality assurance programme will ensure the best possible results and consistency of the radiotherapeutic treatment. Quality assurance in any radiotherapy department involves the responsibility of a multi-disciplinary team of radiation oncologists, medical physicists and radiation technologists. This paper will focus on the physical and technical aspects of QA. The organizational structure and responsibility of the physics QA team is outlined and also included the types and frequencies of QA checks. For a QA program to be effective, action levels should be clearly defined and understood by all staff concerned. Data of the Singapore National Cancer Centre's participation over the last ten years with the IAEA / WHO Postal TLD Dose Inter-comparison programme is presented. The data obtained were within the international criteria. For a QA program to be successfully implemented, there must be a commitment by management to provide adequate staff, test equipment, machine time as well as continual training and education. This is in addition to the positive attitudes of all the staff. A quality audit is also necessary to serve as a check and balance to ensure that the QA is in order.
-
Two
$^{192}$ Ir HDR brachytherapy sources were calibrated with a Farmer ionization chamber in air method and in a PMMA cylindrical phantom. The calibration air method used ionization chamber with buildup cap, and 8 variation distances for center-to-center of the source to chamber. In the optimum distance the measured activity, especially for the high activity source, deviation was 0.3% from the activity provided by manufacturer. Calibration with a PMMA cylindrical phantom was less sensitive, and suitable for quick check method with accuracy less than 10%. -
Filmless full-PACS in korea has rapidly been growing, since government had supported collaborative PACS project between industry and university hospital in late of 1995. At the same time, a small company had started PACS business, while the Korea PACS society was being formed. In the beginning, PACS societies had focused on developing peripheral solutions such as DICOM gateway for image acquisition, x-ray film digitizer, and viewing software for research or management of personal image data, while Samsung Medical Center had started installing an imported partial PACS system which had recently upgraded with a new system. In similar time frame, a few hospitals had started developing and installing domestic large scale full-PACS system. Several years later, many hospitals have installed full-PACS system with national policy of reimbursement for PACS exams in November 1999. It is believed that Korea is the first country that adopted PACS reimbursement for filmless full-PACS as a national policy. Both experiences of full-PACS installation and national policy generated tremendous intellectual and technological expertise about PACS at all levels, clinical, hospital management, education, and industrial sectors. There are currently three types of PACS system which includes domestic, imported, and hybrid PACS system with imported solution for core system and domestic solution for peripheral system. There are more than 20 domestic PACS companies and they have now enough experiences so that they are capable of installing a truly full-PACS system for large-scale teaching hospitals. PACS societies in Korea understand how to design, implement, install, manage, sustain, and provide good services for large-scale full-PACS. PACS society has also strength for the highest integration technology of the Hospital Information. However, further understanding and timely implementation of continuously evolving international standard and integrated healthcare enterprise concepts may be necessary for international leading of PACS technologies for the future.
-
Over the past two decades there has been a tremendous growth in the number of synchrotron radiation facilities in the world and also in Japan. The high flux and brightness radiation which derive from the third generation low emittance rings provide an ideal source for many applications in the medical sciences. The application of synchrotron radiation to medical imaging started in the early 80's in U.S.A, followed by European countries such as Germany and Russia. In Japan, researchs on intravenous coronary angiography started in 1884 at the Institute for High Energy Phisics(KEK) in Tsukuba. At present, it is the only application of syncrotron radiation which is at the stage of human study. In '90s, newer techniques such as phase and refraction contrast imaging appeared which are at the in vitro or animal study stage. Various types of x-ray CT have also been developed for three-dimensional imaging of the subjects. The present status of medical applications of synchrotron radiation in Japan is reviewed.
-
Conceptual design of the next generation PET with both high sensitivity and high spatial resolution has been performed. A detector unit using a depth encoding scheme was designed and constructed for trial. The unit consists of four Gd
$_2$ SiO$\sub$ 5/:Ce crystal blocks in a 2x2x4 array coupled to a position-sensitive photomultiplier tube having metal channel dynodes and 4x4 multi-anodes. Our proposed detector is a very reliable and simple solution suitable for volume PET devices since the proposed depth encoding scheme does not need additional photo-detectors. -
Mammography is considered the single most important diagnostic tool in the early detection of breast cancer. Today's dedicated mammographic equipment, specially designed x-ray screen/film combinations, coupled with controlled film processing, produces excellent image quality and can detect very low contrast small lesions. In mammography, it is most important to produce consistent high-contrast, high-resolution images at the lowest radiation dose consistent with high image quality. Some of the major technical development milestones that have let to today's high quality in mammographic imaging are reviewed. Both the American College of Radiology Mammography Accreditation Program and the Mammography Quality Standards Act have significant impact on the improvement of the technical quality of mammographic images in the United States and worldwide. A most recent development in digital mammography has opened up avenues for improving diagnosis.
-
Motion of lung tumors from respiration has been reported in the literature to be as large as of 1-2 cm. This motion requires an additional margin between the Clinical Target Volume (CTV) and the Planning Target Volume (PTV). While such a margin is necessary, it may not be sufficient to ensure proper delivery of Intensity Modulated Radiotherapy (IMRT) to the CTV during the simultaneous movement of the DMLC. Gated treatment has been proposed to improve normal tissues sparing as well as to ensure accurate dose coverage of the tumor volume. The following questions have not been addressed in the literature: a) what is the dose error to a target volume without gated IMRT treatment\ulcorner b) what is an acceptable gating window for such treatment. In this study, we address these questions by proposing a novel technique for calculating the 3D dose error that would result if a lung IMRT plan were delivered without gating. The method is also generalized for gated treatment with an arbitrary triggering window. IMRT plans for three patients with lung tumor were studied. The treatment plans were generated with HELIOS for delivery with 6 MV on a CL2100 Varian linear accelerator with a 26 pair MLC. A CTV to PTV margin of 1 cm was used. An IMRT planning system searches for an optimized fluence map
${\Phi}$ (x,y) for each port, which is then converted into a dynamic MLC file (DMLC). The DMLC file contains information about MLC subfield shapes and the fractional Monitor Units (MUs) to be delivered for each subfield. With a lung tumor, a CTV that executes a quasi periodic motion z(t) does not receive${\Phi}$ (x,y), but rather an Effective Incident Fluence EIF(x,y). We numerically evaluate the EIF(x,y) from a given DMLC file by a coordinate transformation to the Target's Eye View (TEV). In the TEV coordinate system, the CTV itself is stationary, and the MLC is seen to execute a motion -z(t) that is superimposed on the DMLC motion. The resulting EIF(x,y)is inputted back into the dose calculation engine to estimate the 3D dose to a moving CTV. In this study, we model respiratory motion as a sinusoidal function with an amplitude of 10 mm in the superior-inferior direction, a period of 5 seconds, and an initial phase of zero. -
As intensity modulated radiation therapy compared with conventional radiation therapy, tumor target dose increased and normal tissues and critical organs dose reduced. In brain tumor, treatment planning of intensity modulated radiation therapy was practiced in 4MV, 6MV, 15MV X-ray energy. In these X-ray energy, was considered the dose distribution and dose volume histogram. As 4MV X-ray compared with 6MV and 15MV, maximum dose of right optic-nerve increased 10.1 %, 8.4%. Right eye increased 5.2%, 2.7%. And left optic-nerve, left eye, optic chiasm and brainstem incrased 1.7% - 5.2%. Even though maximum dose of PTV and these critical organs show different from 1.7% - 10.1% according to X-ray energies, these are a piont dose. Therefore in brain tumor, treatment planning of intensity modulated radiation therapy in 9 treatment field showed no relation with energy dependency.
-
A PC based software, the RTP Research Tool Box (RTB), was developed for IMRT optimization research. The software was consisted of an image module, a beam registration module, a dose calculation module, a dose optimization module and a dose display module. The modules and the Graphical User Interface (GUI) were designed to easily amendable by negotiating the speed of performing tasks. Each module can be easily replaced to new functions for research purpose. IDL 5.5 (RSI, USA) language was used for this software. Five major modules enable one to perform the research on the dose calculation, on the dose optimization and on the objective function. The comparison of three cost functions, such as the uncomplicated tumor control probability (UTCP), the physical objective function and the pseudo-biological objective function, which was designed in this study, were performed with the RTB. The optimizations were compared to the simulated annealing and the gradient search optimization technique for all of the optimization objective functions. No significant differences were found among the objective functions with the dose gradient search technique. But the DVH analysis showed that the pseudo-biological objective function is superior to the physical objective function when with the simulated annealing for the optimization.
-
In standard teletherapy, a treatment plan is generated with the aid of a treatment planning system, but it is common to perform an independent monitor unit verification calculation (MUVC). In exact analogy, we propose and demonstrate that a simple and accurate MUVC in Intensity Modulated Radiotherapy (IMRT) is possible. We introduce a concept of Modified Clarkson Integration (MCI). In MCI, we exploit the rotational symmetry of scattering to simplify the dose calculation. For dose calculation along a central axis (CAX), we first replace the incident IMRT fluence by an azimuthally averaged fluence. Second, the Clarkson Integration is carried over annular sectors instead of over pie sectors. We wrote a computer code, implementing the MCI technique, in order to perform a MUVC for IMRT purposes. We applied the code to IMRT plans generated by CORVUS. The input to the code consists of CORVUS plan data (e.g., DMLC files, jaw settings, MU for each IMRT field, depth to isocenter for each IMRT field), and the output is dose contribution by individual IMRT field to the isocenter. The code uses measured beam data for Sc, Sp, TPR, (D/Mu)
$\_$ ref/ and includes effects from MLC transmission, and radiation field offset. On a 266 MHZ desktop computer, the code takes less than 15 sec to calculate a dose. The doses calculated with MCI algorithm agreed within +/- 3% with the doses calculated by CORVUS, which uses a 1cm x 1cm pencil beam in dose calculation. In the present version of MCI, skin contour variations and inhomogeneities were neglected. -
In Intensity Modulated Radiotherapy (IMRT), radiation is delivered in a multiple of Multileaf Collimator (MLC) subfields. A subfield with a small leaf-to-leaf opening is highly sensitive to a leaf-positional error. We introduce a method of identifying and rejecting IMRT plans that are highly sensitive to a systematic MLC gap error (sensitivity to possible random leaf-positional errors is not addressed here). There are two sources of a systematic MLC gap error: Centerline Mechanical Offset (CMO) and, in the case of a rounded end MLC, Radiation Field Offset (RFO). In IMRT planning system, using an incorrect value of RFO introduces a systematic error ΔRFO that results in all leaf-to-leaf gaps that are either too large or too small by (2ㆍΔRFO), whereas assuming that CMO is zero introduces systematic error ΔCMO that results in all gaps that are too large by ΔCMO = CMO. We introduce a concept of the Average Leaf Pair Opening (ALPO) that can be calculated from a dynamic MLC delivery file. We derive an analytic formula for a fractional average fluence error resulting from a systematic gap error of Δ
$\chi$ and show that it is inversely proportional to ALPO; explicitly it is equal to, (equation omitted) in which$\varepsilon$ is generally of the order of 1 mm and Δx=2ㆍΔRFO+CMO. This analytic relationship is verified with independent numerical calculations. -
Yonsei Cancer Center introduced an IMRT System at the beginning of February, 2002. The system consists of CORVUS(NOMOS) inverse planning machine, LANTIS(SIEMENS), PRIMEVIEW and PRIMART Linac(SIEMENS). The optimization of CORVUS planning system with PRIMART is an important work to get an efficient treatment plan. So, we studied two Finite Size Pencil Beams, 1.0 x 1.0 cm
$^2$ and 0.5 x 1.0 cm$^2$ , and four leaf transmission sets, 5%, 10%, 20%, 33%. We compared the dose distribution of target volume and delivery efficiency of the plan results. -
Lee, Suk;Chu, Sung-Sil;Lee, Sei-Byung;Jino Bak;Cho, Kwang-Hwan;Kwon, Soo-Il;Jinsil Seong;Lee, Chang-Geol;Suh, Chang-Ok 86
The purpose is to develop a system to reduce the organ movement from the respiration during the 3DCRT or IMRT. This research reports the experience of utilizing personally developed system for mobile tumors. The patients clinical database was structured for 10 mobile tumors and patient setup error measurement and immobilization device effects were investigated. The RMRD system is composed of the respiratory motion reduction device utilized in prone position and abdominal strip device(ASD) utilized in the supine position, and the analysis program, which enables the analysis on patients setup reproducibility. Dose to normal tissue between patients with RMRDs and without RMRDs was analyzed by comparing the normal tissue volume, field margins and dose volume histogram(DVH) using fluoroscopy and CT images. And, reproducibility of patients setup verify by utilization of digital images. When patients breathed freely, average movement of diaphragm was 1.2 cm in prone position in contrast to 1.6 cm in supine position. In prone position, difference in diaphragm movement with and without RMRDs was 0.5 cm and 1.2 cm, respectively, showing that PTV margins could be reduced to as much as 0.7 cm. With RMRDs, volume of the irradiated normal tissue (lung, liver) reduced up to 20 % in DVH analysis. Also by obtaining the digital image, reproducibility of patients setup verify by visualization using the real-time image acquisition, leading to practical utilization of our software. Internal organ motion due to breathing can be reduced using RMRDs, which is simple and easy to use in clinical setting. It can reduce the organ motion-related PTV margin, thereby decrease volume of the irradiated normal tissue. -
Minohara, Shinichi;Kanai, Tatsuaki;Endo, Masahiro;Kato, Hirotoshi;Miyamoto, Tadaaki;Tsujii, Hirohiko 90
In particle radiotherapy, a shape of the beam to conform the irradiation field is statically defined by the compensator, collimator and potal devices at the outside of the patient body. However the target such as lung or liver cancer moves along with respiration. This increases the irradiated volume of normal tissue. Prior discussions about organ motions along with respiration have been mainly focused on inferior-superior movement that was usually perpendicular to beam axis. On the other hand, the change of the target depth along the beam axis is very important especially in particle radiotherapy, because the range end of beam (Bragg peak) is so sharp as to be matched to distal edge of the target. In treatment planning, the range of the particle beam inside the body is calculated using a calibration curve relating CT number and water equivalent path length (WEL) to correct the inhomogeneities of tissues. The variation in CT number along the beam path would cause the uncertainties of range calculation at treatment planning for particle radiotherapy. To estimate the uncertainties of the range calculation associated with patient breathing, we proposed the method using sequential CT images with respiration waveform, and analyzed organ motions and WELs at patients that had lung or liver cancer. The variation of the depth along the beam path was presented in WEL rather than geometrical length. In analyzed cases, WELs around the diaphragm were remarkably changed depending on the respiration, and the magnitude of these WEL variations was almost comparable to inferior-superior movement of diaphragm. The variation of WEL around the lung was influenced by heartbeat. -
In order to achieve the radiotherapy more precisely using highly energetic heavy charged particles, it is important to know the distribution of the electron density in a human body, which is highly related to the range of charged particles. We can directly obtain the 2-D distribution of the electron density in a sample from a heavy ion CT image. For this purpose, we have developed a heavy ion CT system using a broad beam. The performance, especially the position resolution, of this system is estimated in this work. All experiments were carried out using the heavy ion beam from the HIMAC. We have obtained the projection data of polyethylene samples with various sizes using He 150 MeV/u, C 290 MeV/u and Ne 400 MeV/u beams. The used targets are the cylinders of 40, 60 and 80 mm in diameter, each of them has a hole of 10 mm in diameter at the center of it. The dependence of the spatial resolution on the target size and the kinds of beams will be discussed.
-
A radiation incident took place during treatment on MEDNIF Tele cobalt-60 therapy machine in B.P.KOIRALA MEMORIAL CANCER HOSPITAL in Bharatpur, Nepal. This Chinese made machine has activity of 6240 Curies of cobalt -60. This machine has fulfilled safety requirements. ICRP recommendations, safety rules are followed and practiced. The source was struck up during treatment and a technician was exposed to equivalent dose of 13.75 mSv. recorded by Personal film badge. Risks of workers are comparable to other safe industries. All exposures shall be kept as low as reasonably possible. The higher level of safety is achieved only when every one is dedicated to common goal. A lesson is learnt for future. Good practice is essential but not sufficient. A high demand for tele Cobalt therapy convinced management to replace Mednif machine with a new efficient Elite Tele Cobalt theratron Machine.
-
Suh, Ye-Lin;Yi, Byong-Yong;Ahn, Seung-Do;Lee, Sang-Wook;Kim, Jong-Hoon;Shin, Seung-Ai;Park, Eun-Kyung 100
The demand for a better immobilization device has been increased in the radiation oncology field. Especially, it is essential to have a reliable and practical immobilization tool for the whole body radiosurgery and the IMRT (intensity modulated radiation therapy). A useful method to immobilize the abdomen for the external beam radiation treatment is developed. The air-injected balloon blanket (AIBB) was designed as an immobilization device. As the air was injected into it, it pressed down the patient's abdomen and fixed the patient. The AIBB played a role not only to grab the patients' motion, but also to increase the patients' setup reproducibility. Patients' movements due to the respiration were reduced and the reconstruction could be maximized. The experimental results revealed that the AIBB could be used for the clinic. -
Kim, Young-Seok;Yi, Byong-Yong;Kim, Jong-Hoon;Ahn, Seung-Do;Lee, Sang-wook;Im, Ki-Chun;Park, Eun-Kyung 103
Whole body stereotactic radiosurgery (WBSRS) technique is believed to be useful for the metastatic lesions as well as relatively small primary tumors in the trunk. Unlike stereotactic radiosurgery to intracranial lesion, inherent limitation on immobilization of whole body makes it difficult to achieve the reliable setup reproducibility. For this reason, it is essential to develop an objective and quantitative method of evaluating setup error for WBSRS. An evaluation technique using image registration has been developed for this purpose. Point pair image registrations with WBSRS frame coordinates were performed between two sets of CT images acquired before each treatment. Positional displacements could be determined by means of volumetric planning target volume (PTV) comparison between the reference and the registered image sets. Twenty eight sets of CT images from 19 WBSRS patients treated in Asan Medical Center have been analyzed by this method for determination of setup random error of each treatment. It is objective and clinically useful to analyze setup error quantitatively by image registration technique with WBSRS frame coordinates. -
Recent advances in radiation transport algorithms, computer hardware performance, and parallel computing make the clinical use of Monte Carlo based dose calculations possible. Monte Carlo treatment planning requires accurate beam information as input to generate accurate dose distributions. The procedures to obtain this accurate beam information are called "commissioning", which includes accelerator head modeling. In this study, we would like to investigate how much accurately Monte Carlo based dose calculations can predict the measured beam data in various conditions. The Siemens 6MV photon beam and the BEAM Monte Carlo code were used. The comparisons including the percentage depth doses and off-axis profiles of open fields and wedges, output factors will be presented.
-
Jeong, Dong-Hyeok;Oh, Young-Kee;Kim, Jhin-Kee;Kim, Jeung-Kee;Shin, Kyo-Chul;Kim, Ki-Hwan;Lee, Jeong-Ok;Kang, Jeong-Ku;Moon, Sun-Rock 109
Using Monte Carlo calculations the effects of longitudinal magnetic fields on the beam profiles produced by clinical electron beam were studied. The Monte Carlo calculations were performed using the EGS4 code system modified to account for external magnetic fields. The beam profiles for a 6 MeV electron beam with longitudinal magnetic fields of 0.5-3.0 T were calculated. As a result of these calculations we found that the penumbra widths can be reduced with increased magnetic fields. This means that the electron therapy benefits from the external magnetic fields. -
The Monte Carlo simulation method is a numerical solution to a problem that models objects interacting with other objects or their environment based upon simple object-object or object-environment relationships. In spite of its great accuracy, It was turned away because of long calculation time to simulate a model. But, it is used to simulate a linear accelerator frequently with the advance of computer technology. To simulate linear accelerator in Monte Carlo simulations, there are many parameters needed to input to Monte Carlo code. These data can be supported by a linear accelerator manufacturer. Although the model of a linear accelerator is the same, a different characteristic property can be found. Thus, we performed a commissioning process of 6MV photon beam in Varian 2300C/D model with BEAM/EGS4 Monte Carlo code. The head geometry data were put into BEAM/EGS4 data. The mean energy and energy spread of the electron beam incident on the target were varied to match Monte Carlo simulations to measurements. TLDs (thermoluminescent dosimeter) and radiochromic films were employed to measure the absorbed dose in a water phantom. Beam profile was obtained in 40cm
${\times}$ 40cm field size and Depth dose was in 10cm${\times}$ 10cm. At first, we compared the depth dose between measurements and Monte Carlo simulations varying the mean energy of an incident electron beam. Then, we compared the beam profile with adjusting the beam radius of the incident electron beam in Monte Carlo simulation. The results were found that the optimal mean energy was 6MV and beam radius of 0.1mm was well matched to measurements. -
Park, Chang-Hyun;Park, Dahl;Park, Dong-Hyun;Park, Sung-Yong;Shin, Kyung-Hwan;Kim, Dae-Yong;Cho, Kwan-Ho 116
It has been noted that Monte Carlo simulations are the most accurate method to calculate dose distributions in any material and geometry. Monte Carlo transport algorithms determine the absorbed dose by following the path of representative particles as they travel through the medium. Accurate Monte Carlo dose calculations rely on detailed modeling of the radiation source. We modeled the effects of beam modifiers such as collimators, blocks, wedges, etc. of our accelerator, Varian Clinac 600C/D to ensure accurate representation of the radiation source using the EGSnrc based BEAM code. These were used in the EGSnrc based DOSXYZ code for the simulation of particles transport through a voxel based Cartesian coordinate system. Because Monte Carlo methods use particle-by-particle methods to simulate a radiation transport, more particle histories yield the better representation of the actual dose. But the prohibitively long time required to get high resolution and accuracy calculations has prevented the use of Monte Carlo methods in the actual clinical spots. Our ultimate aim is to develop a Monte Carlo dose calculation system designed specifically for radiation therapy planning, which is distinguished from current dose calculation methods. The purpose of this study in the present phase was to get dose calculation results corresponding to measurements within practical time limit. We used parallel processing and some variance reduction techniques, therefore reduced the computational time, preserving a good agreement between calculations of depth dose distributions and measurements within 5% deviations. -
The aim is to urge the need of elaborate commissioning of 3D RTP system from the firsthand experience. A 3D RTP system requires so much data such as beam data and patient data. Most data of radiation beam are directly transferred from a 3D dose scanning system, and some other data are input by editing. In the process inputting parameters and/or data, no error should occur. For RTP system using algorithm-bas ed-on beam-modeling, careless beam-data processing could also cause the treatment error. Beam data of 3 different qualities of photon from two linear accelerators, patient data and calculated results were commissioned. For PDD, the doses by Clarkson, convolution, superposition and fast superposition methods at 10 cm for 10
${\times}$ 10 cm field, 100 cm SSD were compared with the measured. An error in the SCD for one quality was input by the service engineer. Whole SCD defined by a physicist is SAD plus d$\sub$ max/, the value was just SAD. That resulted in increase of MU by 100${\times}$ ((1_d$\sub$ max//SAD)$^2$ -1)%. For 10${\times}$ 10 cm open field, 1 m SSD and at 10 cm depth in uniform medium of relative electron density (RED) 1, PDDs for 4 algorithms of dose calculation, Clarkson, convolution, superposition and fast-superposition, were compared with the measured. The calculated PDD were similar to the measured. For 10${\times}$ 10 cm open field, 1 m SSD and at 10 cm depth with 5 cm thick inhomogeneity of RED 0.2 under 2 cm thick RED 1 medium, PDDs for 4 algorithms were compared. PDDs ranged from 72.2% to 77.0% for 4 MV X-ray and from 90.9% to 95.6% for 6 MV X-ray. PDDs were of maximum for convolution and of minimum for superposition. For 15${\times}$ 15 cm symmetric wedged field, wedge factor was not constant for calculation mode, even though same geometry. The reason is that their wedge factor is considering beam hardness and ray path. Their definition requires their users to change the concept of wedge factor. RTP user should elaborately review beam data and calculation algorithm in commissioning. -
The main principle of radiation therapy is to deliver optimum dose to tumor to increase tumor cure probability while minimizing dose to critical normal structure to reduce complications. RTP system is required for proper dose plan in radiation therapy treatment. The main goal of this research is to develop dose model for photon, electron, and brachytherapy, and to display dose distribution on patient images with optimum process. The main items developed in this research includes: (l) user requirements and quality control; analysis of user requirement in RTP, networking between RTP and relevant equipment, quality control using phantom for clinical application (2) dose model in RTP; photon, electron, brachytherapy, modifying dose model (3) image processing and 3D visualization; 2D image processing, auto contouring, image reconstruction, 3D visualization (4) object modeling and graphic user interface; development of total software structure, step-by-step planning procedure, window design and user-interface. Our final product show strong capability for routine and advance RTP planning.
-
Tabushi, Katsuyoshi;Koyama, Shuji;Homma, Mitsuhiko;Tamiya, Tadashi;Yajima, Mihoko;Imai, Kuniharu;Obata, Yasunori 123
Blue light of Cherenkov radiation generated by electrons in transparent substances such as water and acrylic resin is well known generally. If students can easily observe the blue light at school, they may be impressed by the fascinating radiation. Four years ago, management of the Co-60 unit for radiotherapy was transferred to Nagoya University School of Health Sciences from a related hospital. We have examined whether or not the Cherenkov radiation in water from secondary electrons generated by Co-60 gamma-rays can be safely observed by eyes and photographs. First, the Cherenkov radiation in the water tank was led to the corridor outside the irradiation room by a mirror, and observed directly without any effect of the radiation exposure. Second, photographs of the Cherenkov radiation were taken under the conditions consisted of several irradiation fields and pass lengths of gamma-rays in water. -
Ishibashi, Masatoshi;Harauchi, Hajime;Kou, Hiroko;Kumazaki, Yu;Shimizu, Keiji;Harano, Masako;Numasaki, Hodaka;Yoshioka, Munenori;Inamura, Kiyonari 126
A learning system was built into an on-line, multi-institutional radiotherapy database, where the treatment history records and the results in each institution were integrated, each radiotherapy planning was supported, and it led to the improvement in treatment results. -
Song, Ju-Young;Suh, Tae-Suk;Lee, Hyung-Koo;Choe, Bo-Young;Ahn, Seung-Do;Park, Eun-Kyung;Kim, Jong-Hoon;Lee, Sang-Wook;Yi, Byong-Yong 129
The practical virtual compensator, which uses a dynamic multi-leaf collimator (dMLC) and three-dimensional radiation therapy planning (3D RTP) system, was designed. And the feasibility study of the virtual compensator was done to verify that the virtual compensator acts a role as the replacement of the physical compensator. Design procedure consists of three steps. The first step is to generate the isodose distributions from the 3D RTP system (Render Plan, Elekta). Then isodose line pattern was used as the compensator pattern. Pre-determined compensating ratio was applied to generate the fluence map for the compensator design. The second step is to generate the leaf sequence file with Ma's algorithm in the respect of optimum MU-efficiency. All the procedure was done with home-made software. The last step is the QA procedure which performs the comparison of the dose distributions which are produced from the irradiation with the virtual compensator and from the calculation by 3D RTP. In this study, a phantom was fabricated for the verification of properness of the designed compensator. It is consisted of the styrofoam part which mimics irregular shaped contour or the missing tissues and the mini water phantom. Inhomogeneous dose distribution due to the styrofoam missing tissue could be calculated with the RTP system. The film dosimetry in the phantom with and without the compensator showed significant improvement of the dose distributions. The virtual compensator designed in this study was proved to be a replacement of the physical compensator in the practical point of view. -
Shimizu, Keiji;Harano, Masako;Harauchib, Hajime;Kou, Hiroko;Kumazaki, Yu;Ishibashi, Masatoshi;Numasaki, Hodaka;Yoshioka, Munenori;Inamura, Kiyonari 133
We developed a system that can assist to automatically survey survived patients and to lighten the hard work imposed on radiation oncologists employing Radiation Oncology Greater Area Database (ROGAD) and Internet by web mail. -
We have been researching upgrade version of a stereotactic whole body frame, used for evaluating daily setup accuracy of the patient positioning during fractionated extra-cranial stereotactic radiotherapy. Currently, we are focusing on the development of a new stereotactic whole body frame, and then will handle organ movement produced by breathing at the next stage. MeV-Green is chosen for the best immobilizer possible and the epoxy board is for the frame with the dimension of 110 em in length, 50 cm in width in order to maximize transmission rate of the beam from lateral or posterior direction and to fit CT and PET scanners with an aperture of 55 cm at least. The key point of an upgraded stereotactic whole body frame will be set on the collision-free rotation of the gantry with the frame, and the development of the checking structure for the daily patient repositioning regarding internal target.
-
Cho, Sam-Ju;Yi, Byong-Yong;Back, Geum-Mun;Lee, Sang wook;Ahn, Seung-Do;Kim, Jong-Hoon;Kwon, Soo-Il;Park, Eun-Kyung 138
The spinal cord dose is the one of the limiting factor for the radiation treatment of the head & neck (H&N) or the thorax region. Due to the fact that the cord is the elongated shaped structure, it is not an easy task to maintain the cord dose within the clinically acceptable dose range. To overcome this problem, the spinal cord partial block technique (PBT) with the dynamic Multi-Leaf Collimator (dMLC) has been developed. Three dimension (3D) conformal beam directions, which minimize the coverage of the normal organs such as the lung and the parotid gland, were chosen. The PBT field shape for each field was designed to shield the spinal cord with the dMLC. The transmission factors were determined by the forward calculation method. The plan comparisons between the conventional 3D conformal therapy plan and the PTB plan were performed to evaluate the validity of this technique. The conformity index (CI) and the dose volume histogram (DVH) were used as the plan comparison indices. A series of quality assurance (QA) was performed to guarantee the reliable treatment. The QA consisted of the film dosimetry for the verification of the dose distribution and the point measurements. The PBT plan always generated better results than the conventional 3D conformal plan. The PBT was proved to be useful for the H&N and thorax region. -
In 1995, the American Association of Physicists in Medicine (AAPM) Task Group 43 published a report dealing with the dosimetry of interstitial brachytherapy sources, generally known as the TG-43 report. Compared to previously adopted formalisms, a formalism proposed in this report provides a more accurate and systematic brachytherapy dose calculation method, especially for Ir-192 and other low energy gamma sources such as 1-125 and Pd-l03. In this lecture, an overview of the TG-43 formalism will be presented, along with the lecturer's experience in determining the TG-43 parameters by the Monte Carlo method and experimental methods such as TLD and radiochromic film.
-
Hiroki, Ohtani;Toraji, Irifune;Etsuo, Kunieda;Hidetoshi, Saitoh;Masahiro, Fukushi;Tsuguhisa, Katoh 144
Stereotactic radiotherapy is required to irradiate a small tumor accurately. The radiotherapy showing improves when making an accidental error little boundlessly. It is performed according to treatment planning that is established by the outside landmark of head. At present, when stereotactic radiotherapy for a head is done, the Leksell Flame is fixed on the head, and positioning based on the point and so on which it is in that fixed implement is performed. However, there are problems on the method done at present in the point such as reappearance when the fractionated irradiation method in which the Leksell Flame is removed and installed at every treatment is done because there are landmarks outside the head. Landmarks in the skull were decided, and that precision was examined for the purpose of the improvement of the radiation therapeutic gain. Linac-graphy with longitudinal and lateral view were taken with 6 MV photon beams. A distance to base point inside the skull, each film measured the angle from a center of the small irradiation field, and comparison was done. From the results, a large accidental error wasn't seen as a result of the measurement by every film. Stereotactic radiotherapy for a head treatment had an accidental error of about several millimeters when treatment positioning was done. Therefore, it was thought that there was no problem about an accidental error to arise by putting a landmark in the skull. And, because an accidental error was easy to discover, we thought that modification could be done easily. It was suggested that a landmark in the skull on thus study were useful for improvement of stereotactic radiotherapy. -
The aim of stereotactic radiosurgery(SRS) is to deliver a high dose to a target region and a low dose to critical organ through only one or a few irradiation. To satisfy this aim, optimized irradiating conditions must be searched in the planning. Thus, many mathematical methods such as gradient method, simulated annealing and genetic algorithm had been proposed to find out the conditions automatically. There were some limitations using these methods: the long calculation time, and the difficulty of unique solution due to the different shape of tumor. In this study, optimization protocol using ideal models and data base was proposed. Proposed optimization protocol constitutes two steps. First step was a preliminary work. Some possible ideal geometry shapes, such as sphere, cylinder, cone shape or the combination, were assumed to approximate the real tumor shapes. Optimum variables such as isocenter position or collimator size, were determined so that the high dose region could be shaped to fit ideal models with the arrangement of multiple isocenter. Data base were formed with those results. Second, any shaped real targets were approximated to these models using geometry comparison. Then, optimum variables for ideal geometry were chosen from the data base predetermined, and final parameters were obtained by adjusting these data. Although the results of applying the data base to patients were not superior to the result of optimization in each case, it can be acceptable as a starting point of plan.
-
Jang, Ji-Na;Suh, Tae-Suk;Huh, Soon-Nyung;Kim, Hoi-Nam;Yoon, Sei-Chul;Lee, Hyoung-Koo;Choe, Bo-Young 150
High dose rate (HDR) brachytherapy in the treatment of cervix carcinoma has become popular, because it eliminated many of the problems with conventional brachytherapy. In order to improve clinical effectiveness with HDR brachytherapy, dose calculation algorithm, optimization procedures, and image registrations should be verified by comparing the dose distributions from a planning computer and those from a humanoid phantom irradiated. Therefore, the humanoid phantom should be designed such that the dose distributions could be quantitatively evaluated by utilizing the dosimeters with high spatial resolution. Therefore, the small size of thermoluminescent dosimeter (TLD) chips with the dimension of 1/8" and film dosimetry with spatial resolution of <1mm used to measure the radiation dosages in the phantom. The humanoid phantom called a pelvic phantom is made of water and tissue-equivalent acrylic plates. In order to firmly hold the HDR applicators in the water phantom, the applicators are inserted into the grooves of the applicator supporters. The dose distributions around the applicators, such as Point A and B, can be measured by placing a series of TLD chips (TLD-to- TLD distance: 5mm) in three TLD holders, and placing three verification films in orthogonal planes. -
Park, Sung-Yong;Shin, Kyung-Hwan;Park, Dahl;Cho, Jung-Keun;Kim, Dae-Yong;Kim, Jong-Won;Cho, Kwan-Ho;Kim, Tae-Hyun;Chie, Eui-Kyu 154
Brachytherapy has a long history in the treatment of cancer. However, the treatment planning technique for brachytherapy has lagged somewhat behind the corresponding developments for external beam therapy as far as the imaging technique is concerned. Currently, the orthogonal-film-based treatment planning is performed at most institutions even though the CT-based planning is available. The aim of this study is to evaluate the CT-based vs. the orthogonal-film-based treatment planning in cervix cancer. The doses to point A, point B, rectum and bladder points according to ICRU 38 were calculated for the two methods above. In addition, the volumetric studies such as 3D dose computation and DVH were obtained for the CT-based planning. For the bulky tumor, the isodose lines of point A prescription were not fairly covered for the CTV. The CT -based dose planning can overestimate the maximum dose delivered to bladder and rectum by 30%. The CT-based planning has several advantages over the orthogonal-film-based such as 3D dose display, DVH, and more accurate target delineation. It is suggested that the prescription point in cervix cancer be revised especially for the bulky tumor. -
Tanaka, Kenichi;Kobayashi, Tooru;Nakagawa, Yoshinobu;Sakurai, Yoshinori;Ishikawa, Masayori;Hoshi, Masaharu 157
The dosage of intra-operative BNCT using near-threshold$^{7}$ Li(p,n)$^{7}$ Be direct neutrons was evaluated with the calculation method validated with the phantom experiment. The production of both neutrons by near-threshold$^{7}$ Li(p,n)$^{7}$ Be and gamma rays by$^{7}$ Li(p,p'gamma)$^{7}$ Li in a Li target was calculated using Lee's method and their transport in the phantom was calculated with MCNP-4B. As a result, the region satisfying the requirements of the protocol in intra-operative BNCT for brain tumors in Japan was acknowledged to be comparable to present BNCT, for the proton energy of 1.900 MeV for example. A boron-dose enhancer (BDE) introduced in this study to increase$^{10}$ (n,$\alpha$ )$^{7}$ Li dose in a living body was effective. The void used to increase doses in deep regions was also valid with the BDE. It was found that intra-operative BNCT using near-threshold$^{7}$ Li(p,n)$^{7}$ Be direct neutrons is feasible. -
Soheigh Suh;Lee, Dong-Han;Ji, Young-Hoon;Lee, Dong-Hoon;Yoo, Seong-Yul;Rhee, Chang-Hun;Rhee, Soo-Yong;Jun, Byung-Jin 161
The BNCT(Boron Neutron Capture Therapy) facility has been developed in Hanaro(High-flux Advanced Neutron Application Reactor), a research reactor of Korea Atomic Energy Research Institute. A typical tangenial beam port is utilized with this BNCT facility. Thermal neutrons can be penetrated within the limits of the possible maximum instead of being filtered fast neutrons and gamma rays as much as possible using the silicon and bismuth single crystals. In addition to, the liquid nitrogen (LN$_2$ ) is used to cool down the silicon and bismuth single crystals for the increase of the penetrated thermal neutron flux. Neutron beams for BNCT are shielded using the water shutter. The water shutter was designed and manufactured not to interfere with any other subsystem of Hanaro when the BNCT facility is operated. Also, it is replaced with conventional beam port plug in order to cut off helium gas leakage in the beam port. A circular collimator, composed of$\^$ 6/Li$_2$ CO$_3$ and polyethylene compounds, is installed at the irradiation position. The measured neutron flux with 24 MW reactor power using the Au-198 activation analysis method is 8.3${\times}$ 10$\^$ 8/ n/cm$^2$ s at the collimator, exit point of neutron beams. Flatness of neutron beams is proven to${\pm}$ 6.8% at 97 mm collimator. According to the result of acceptance tests of the water shutter, the filling time of water is about 190 seconds and drainage time of it is about 270 seconds. The radiation leakages in the irradiation room are analyzed to near the background level for neutron and 12 mSv/hr in the maximum for gamma by using BF$_3$ proportional counter and GM counter respectively. Therefore, it is verified that the neutron beams from BNCT facility in Hanaro will be enough to utilize for the purpose of clinical and pre-clinical experiment. -
No Abstract, See Full Text
-
Kyo Kume;Shigekazu Fukuda;Sadayoshi.Fukumoto;Hisakazu Hamachi;Ha, Takashi.segawa;Satoshi Hatori;Yutaka Hayashi;Go Kagiya;Shuji Kakiuchi 171
Present status of the proton therapy project at the Wakasa Wan Energy Research Center, Japan, is reported. Construction of the accelerator system was finished in 2001, followed by some trials of the production of the flat clinical irradiation field for the clinical usage. After the patient positioning system with X-ray CT was verified, the first clinical trial was started for two patients with prostate cancer. -
A total of 134 patients with stage 1 of non-small cell lung cancer treated by carbon ion beam of HIMAC NIRS were investigated for control rate and delivered dose. The delivered dose of every patient was converted to biological effective dose (BED) of LQ model using fraction number, dose per fraction and alpha beta ratio which shows the maximum correlation between BED and tumor control. The BED of every patient was classified to establish a BED response curve for control. Assuming fraction numbers, dose response curves were introduced from BED response curve. The total doses to realize several control rates were obtained for the treatment of small fraction number.
-
Toyama, Hinako;Shibayama, Kouichi;Kanatsu, Syusuke;Kuroiwa, Toshitaka;Watanabe, Hideo;Wakaisami, Mitsuji;Tsuji, Hiroshi;Endo, Masahiro;Tsujii, Hirohiko 177
We have developed a scheduling system for heavy ion radiotherapy considering the condition of three treatment rooms and treatment planning for each patient. This system consists of a database (patient information, treatment method and machine schedule), a schedule for radiotherapy and WEB server. All operation of this system, such as data input, to change and to view the schedule, are performed by using a WEB browser. In order to protect personal information for the patients, access privilege to each information are limited by according to the occupational category. This system is connected with a hospital central information management system (AMIDAS) and an irradiation-managing computer for the heavy ion radiotherapy. A basic information for the patient is got from AMIDAS and the daily schedule sends to the treatment control computer at each treatment room through the irradiation-managing computer every morning. The daily, weekly, monthly schedules in the treatment room and the treatment condition of each patient are shared on the WEB browser with the all participants of the heavy ion therapy. This system could be useful to save a time to generate a treatment schedule and to inform us the most up-to-date treatment schedule and the related information at the same time. -
A Proton Therapy Center was established this year in National Cancer Center, Korea. We chose IBA of Belgium as the vendor of the equipment package. A 230 MeV fixed-energy cyclotron will deliver proton beams into two gantry rooms, one horizontal beam room, and one experimental station. The building for the equipment is currently under design with a special emphasis on radiation shielding. Installation of equipments is expected to begin in September next year starting with the first gantry, and the acceptance test will be performed about a year later. To generate therapeutic radiation fields the wobbling method will be a main treatment mode for the first gantry. A pencil beam scanning system on the other hand will be equipped for the second gantry relying on the availability at the time of installation. The beam scanning with intensity modulation adapted will be a most advanced form in radiation therapy known as IMPT. Some details on the project progress, scope of the system, and design of building are described.
-
Heavy ion and proton therapy necessitate range weeks, which are time consuming. Three types of variable compensator, membrane type liquid variable compensator, are proposed by some of the authors to overcome the difficulties, by those arbitrarily thickness distribution of compensator obtained from treatment planning is created at the site of treatment. None of the ideas, however, is yet realized. In this research, we are trying to construct prototype membrane-type liquid variable compensator. This variable compensator partitions air and liquid with elasticity membrane and changes the surface of the elasticity membrane with the thread. The air and oil move through holes to and from the out of beam side of two boxes in which they are contained. The boxes are made of Plexiglas(PMMA), the thread which is made of nylon, the elasticity film which is made from latex for the moment.
-
An improved analytical model has been developed to calculate an accurate Bragg curve of proton beam with an arbitrary energy. The model takes the transport of the secondary protons produced by the nuclear inelastic reactions into account. By the model, measured Bragg curves of proton beams with ten energies between 250 and 70 MeV are reproduced well. It will serve to obtain fundamental data for treatment planning and for energy scanning.
-
In the proton therapy using a gantry system, periodical verification of iso-center position is very important to assure precision of patient positioning system at any gantry angles in proton treatment. In the gantry system, there are three different types of iso-center; 1) in a geometrical view, 2) in an X-ray beam's eye view, 3) in a proton beam's eye view. Idealistically, they would be an identical point. They could, however, be different points. It may be a source of errors in patient positioning. At PMRC, we have established a system of verification for iso-center positions using a stainless ball of 2-cm in diameter and an imaging plate. This system provides the relation among a center of a patient target position, a center of proton irradiation field, and/or a center of X-ray field in accuracy of 50
$\square$ m in the 2) and 3) views, as images of a center of the stainless ball and a center of a 100 mm${\times}$ 100 mm-aperture brass collimator recorded on the imaging plate, which is setup at 1-cm behind the ball. In addition, it provides simultaneously the images of the ball and the collimator on an imaging intensifier (II), which is setup downstream of the proton or X-ray beam. We present a method of quality assurance (QA) for calibration of iso-center position in a rotation gantry system at PMRC and the performance of this system. A proton beam position on the 1$\^$ st/ scatterer in the nozzle of the gantry affects less sensitive (reduced by a factor of 1/5) to the results of the iso-center position. The effect is systematically correctable. The effect of the nozzle (or the collimator) position is less than 0.5 mm at the maximum extraction (390 mm). -
We present the results on the calibration of iso-center positions using the quality assurance system established at PMRC for determination of center position in X-ray and proton irradiation fields. Details on the system are presented in another presentation in this session. The equipment in the system is mounted on a patient treatment bed in each proton exposure room, G1 or G2. A center of a stainless ball on the equipment is set at a cross of laser markers located around the iso-center and fixed on the room and on the snout in the gantry. A proton beam or an X-ray beam is exposed onto the ball through a brass collimator of 100 mm
${\times}$ 100 mm and projected onto the imaging plate set at I cm behind the ball. On the axis perpendicular to the thrust axis of the gantry on the imaging plate, a distance between a center of the collimator image and a center of the ball image varies as a cosine function of gantry angles unless the ball is set on the iso-center. An amplitude of the cosine curve shows the distance between the ball and the iso-center, an offset the offset of the collimator, and a phase shift at a zero crossing point the ball direction viewed from the iso-center. We present the relation among the iso-center position, the laser maker position, and the center of proton and X-ray irradiation fields. Its stability and its reproducibility are discussed. -
Iseki, Yasushi;Mizuno, Hideyuki;Kanai, Tatsuaki;Kanazawa, Mitsutaka;Kitagawa, Atsushi;Suda, Mitsuru;Tomitani, Takehiro;Urakabe, Eriko 195
A positron camera, consisting of a pair of Anger-type scintillation detectors, has been developed for verifying the ranges of irradiation beams in heavy-ion radiotherapy. Images obtained by a centroid calculation of photomultiplier outputs exhibit a distortion near the edge of the crystal plane in an Anger-type scintillation detector. The images of a$\^$ 68/Ge line source were detected and look-up tables were prepared for the position correction parameters. Asymmetry of the position distribution detected by the positron camera was prevented with this correction. As a result, a linear position response and a position resolution of 8.6 mm were obtained over a wide measurement field. -
Maruyama, Koichi;Kanazawa, Mitsutaka;Kitagawa, Atsushi;Suda, Mitsuru;Mizuno, Hideyuki;Iseki, Yasushi 199
Cancer therapy using high-energy$^{12}$ C ions is successfully under way at HIMAC, Japan. An alternative beam to$^{12}$ C is$^{11}$ C ions. The merit of$^{11}$ C over$^{12}$ C is its capability for monitoring spatial distribution of the irradiated$^{11}$ C by observing the$\beta$ $^{+}$ decay with a good position resolution. One of the several problems to be solved before its use for therapy is the amount of nuclear interaction that deteriorates the dose concentration owing to the Bragg curve. Utilizing the dedicated secondary beam course for R&D studies at HIMAC, we measured the total energy loss of$^{11}$ C ions in a scintillator block that simulates the soft tissue in human bodies. In addition to the total absorption$^{11}$ C peak, non-negligible bump-shaped contribution is observed in the energy spectrum. The origin of the bump contribution can be nuclear interaction of the incident$^{11}$ C ions with hydrogen and carbon atoms. Further studies to reduce the ambiguity in dose distribution are mentioned. -
Urakabe, Eriko;Kanai, Tatsuaki;Kanazawa, Mitsutaka;Kitagawa, Atsushi;Noda, Koji;Tomitani, Takehiro;Suda, Mitsuru;Mizuno, Hideyuki;Iseki, Yasushi 202
This paper describes the spot scanning with$^{11}$ C beams for the Heavy Ion Medical Accelerator in Chiba (HIMAC). The concave-shaped irradiation field was optimized and the dose distribution was measured by 128-ch ionization chamber. Because of the wide momentum spread inherent in$^{11}$ C beams, the dispersion caused from the beam line and the scanning magnets should be taken into account to calculate the dose distribution of$^{11}$ C beams and their irradiated field. The reconstructed dose distribution is in good agreement with the experimental results. -
The effective dose due to the X-Ray radiography in the patient positioning for the heavy ion radiotherapy was measured on three regions, chest, upper-abdomen and pelvis. All the radiographic systems and the conditions used in the measurements were same as the clinical trial being performed in National Institute of Radiological Sciences, Japan. The organ or tissue for measurements was selected by following ICRP60
$^1$ and the effective dose was calculated from measured organ doses and the surface dose. -
Kohno, Ryosuke;Takada, Yoshihisa;Sakae, Takeji;Terunuma, Toshiyuki;Matsumoto, Keiji;Nohtomi, Akihiro;Matsuda, Hiroyuki 208
In a treatment planning for actual patients with a complex internal structure, we often expect that proton beams, which pass through both a bolus and the heterogeneity in body, will form complex dose distributions. Therefore, the accuracy of the calculated dose distributions has to be verified for such a complex object. Then dose distributions formed by proton beams passing through both the bolus and phantoms simulating a clinical heterogeneity in patients were measured using a silicon semiconductor detector. The calculated results by the range-modulated pencil beam algorithm (RMPBA) produced large errors compared with the measured dose distributions since dose calculation using the RMPBA could not predict accurately the edge-scattering effect both in the bolus and in clinical heterogeneous phantoms. On the other hand, in spite of this troublesome heterogeneity, calculated results by the simplified Monte Carlo (SMC) method reproduced the experimental ones well. It is obvious that the dose-calculations by the SMC method will be more useful for application to the treatment planning for proton therapy. -
Sasaki, Hitomi;Komori, Masataka;Kohno, Toshiyuki;Kanai, Tatsuaki;Hirai, Masaaki;Urakabe, Eriko;Nishio, Teiji 211
The purpose of this work is acquiring some parameters of therapeutic heavy ion beams after penetrating a thick target. The experiments were performed using a pencil-like$\^$ 12/C beam of about 3 mm in diameter from NIRS-HIMAC, and the data were taken at several points of the target thickness for$\^$ 12/C beam of 290 MeV/u and 400 MeV/u. By the simultaneous measurements using some detectors, the atomic number of each fragment particle was identified, and the beam profile, the dose distribution and the LET spectrum for each element were derived. -
Generally uniform dose distribution is assumed to be formed in a target region when a conventional dose formation method using a broad proton beam, a fixed modulation technique, a bolus and an aperture is employed. However, actual situations differ. We usually find non-uniformity in the target region. This is due to the insertion of a range-compensating bolus before the patient. Since the range-compensating bolus has an irregular shape, the scattering in the bolus depends on the lateral position. Dose distribution is overlapping results of dose distribution of pencil-proton beams traversing different lateral positions of the bolus. The lateral extent of dose distribution of each pencil beam traversing the different position differs each other at the same depth in the target object. This is a cause of the non-uniformity of the dose distribution. Therefore the same lateral extent of dose distribution should be attained for different pencil beams at the same depth to obtain a uniform dose distribution. For that purpose, we propose here a bi-material bolus. The bi-material bolus consists of a low-Z material determining mainly the range loss and a high-Z material defining mainly the scattering in the bolus. After passing through the bi-material bolus, protons traversing different lateral positions will have different residual range yet with the same lateral spread at a certain depth. Using the optimized bi-material bolus, we can obtain a more uniform dose distribution in the target region as expected.
-
Komori, Masataka;Fukumura, Akifumi;Hirai, Masaaki;Kanai, Tatuaki;Kohno, Ryosuke;Kohno, Toshiyuki;Matsufuji, Naruhiro;Nanbu, Syuya;Nishio, Teiji 216
Fluence and LET spectrum for 290,400 MeV/u$\^$ 12/C and 400 MeV/u$\^$ 20/Ne beams have been measured by a$\Delta$ E-E counter telescope. Total charge-changing cross sections are deduced from measured fluence. The measured cross sections agree with previous measurements, however, they are disagreement with a model calculation. To dose-averaged LETs, the model calculation can reproduce the measured LETs except for peak LETs at Bragg peak region. -
Onizuka, Y.;Endo, S.;Takada, M.;Ishikawa, M.;Hoshi, M.;Uehara, S.;Hayabuchi, N.;Maeda, N.;Shizuma, K. 219
In this work, single event spectra were measured in order to gain the microdosimetric parameters of some heavy ion radiotherapy fields at HIMAC. Microdosimetry is now a well-established technique for the investigation of complex mixed radiation field. Changes in frequency mean lineal energy y$\_$ F/ as a function of thickness of A150 phantom were obtained. The absorbed dose was obtained by using y$\_$ F/. A direct relation between this single event probability distribution and relative biological effectiveness (RBE) was assumed in order to estimate RBE using the response function. -
In proton and heavy ion radiotherapy, compensators are required to modify the energy of heavy ion, to compensate the local difference of tumor depth. Conventional compensators have to be created, exchanged, and stored for each patient and for each irradiation directions. A Cylinder Type Liquid Variable Compensator is and is under development. Hexagonal cylinders will be arranged in honeycomb structure. In which air and fluid are divided by hexagonal pistons. The position of each piston will be changed in each cylinder for adjusting the thickness of fluid for variable compensator. The location of each hexagonal piston is determined by each controlling cylinder connected to the hexagonal cylinder by inlet pipes of fluid. Each controlling cylinder includes controlling a piston, which is moved mechanically. Each controlling cylinder is to be moved by a motor driven by a computer.
-
In order to improve the accuracy of charged-particle radiation therapy, the beam energy was measured precisely using a TOF-system, and the range using a counter telescope system. A Si detector and a Ge detector were used to estimate the range straggling as a
$\Delta$ E and an E detector, respectively, because they have good energy resolution and the output pulse heights don't depend on the atomic number of detected particles. The results were compared with the theoretical values by a calculation code. -
Yasuda, Naruomi;Abe, Shinji;Nishimura, Katsuyuki;Tomita, Tetsuya;Sato, Hitoshi;Muraishi, Hiroshi;Kanzaki, Takayuki;Inada, Tetsuo;Fujisaki, Tatsuya 228
The relative electron density resolution was discussed by the noise power spectrum (NPS) in the heavy ion CT image. The heavy ion beam$\^$ 12/C accelerated up to 400MeV/u by RIMAC was used in this study. The two-dimensional (2-D) NPS in the CT image was obtained from the one-dimensional (1-D) NPS of the measured residual range distribution of water phantom for single projection, and the noise variance in the CT image was calculated from 2-D NPS. The technique used in the reconstruction was the filtered back-projection method with Shepp-Logan filter. The calculated value suggests the result of our previous works using the density resolution phantom, assuming that the relative electron density resolution is twice the standard deviation. Therefore, the estimation of the noise in CT images by 2-D NPS obtained the measured residual range distribution is the useful method. -
We have been developing microvolume LET counter in order to measure the three-dimensional LET distribution of the therapeutic heavy ion radiation volumes in the water phantom. With help of the technique of cathode induced carhge readout, this detector has a rectangular (box-shape) sensitive volume of which size is about 1 mm
$^2$ and 2mm (depth). -
A Klystron powered dual photon energy electron linear accelerator 2300 C/D from Varian Associates has been installed in our center. From the radiological safety view as well as treatment planning, the output (contamination) of Bremsstrahlung Radiation with electron beam energy determined accurately. It has been found 0.5% to 4.7% with increasing the electron beam energy which is the clinically not much significant in the treatment of the malignant diseases with the treatment of electron beam.
-
Homma, Mitsuhiko;Tabushi, Katsuyoshi;Obata, Yasunori;Tamiya, Tadashi;Koyama, Shuji;Kurooka, Masahiko;Shimomura, Kouhei;Ishigaki, Takeo 237
Knowing the dose distribution in a tissue is as important as being able to measure exposure or absorbed dose in radiotherapy. Since the Dry Imager spread, the wet type automatic processor is no longer used. Furthermore, the waste fluid after film development process brings about a serious problem for prevention of pollution. Therefore, we have developed a measurement method for the dose distribution (CR dosimetry) in the phantom based on the imaging plate (IP) of the computed radiography (CR). The IP was applied for the dose measurement as a dosimeter instead of the film used for film dosimetry. The data from the irradiated IP were processed by a personal computer with 10 bits and were depicted as absorbed dose distributions in the phantom. The image of the dose distribution was obtained from the CR system using the DICOM form. The CR dosimetry is an application of CR system currently employed in medical examinations to dosimetry in radiotherapy. A dose distribution can be easily shown by the Dose Distribution Depiction System we developed this time. Moreover, the measurement method is simpler and a result is obtained more quickly compared with film dosimetry. -
Shin, Dong-Oh;Kim, Seong-Hoon;Seo, Won-Seop;Park, Sung-Yong;Park, Jin-Ho;Kang, Jin-Oh;Hong, Seong-Eon;Ahn, Hee-Kyung 241
New types of protocols have been recently in development, all based on an absorbed dose-to-water with the aim of improving the accuracy of measurements of absorbed dose to water. IAEA TRS-277, the air-kerma standard-based present protocol, and IAEA TRS-398 and AAPM TG-51, the absorbed dose-to-water standard-based new one, were studied and compared theoretically and experimentally for photon beams of 6, 10, and 15 MV. NE 2571 and 3 Farmer types of ionization chambers in widely commercial use were used to determine an absorbed dose to water at the reference depth in water. Two different kinds of calibration factors were given respectively for every chamber calibrated in$\^$ 60/CO gamma ray beams from a Korean Secondary Standard Dosimetry Laboratory (KFDA). This work shows that there is around 1 % of difference of absorbed doses measured between two different types of calibration systems owing to different physical parameters and reference conditions used. We hope this work to help form the basis on development of new type of protocol in Korea. -
Hashimoto, Masatoshi;Kodama, Kiyoyuki;Hanada, Takashi;Ide, Tatsuya;Tsukahara, Tomoko;Maruyama, Koichi 244
We examined a possibility to use inorganic plastic scintillator, which has the effective atomic number close to that of human soft tissue, for the measurement of dose distributions in a shorter time period. The method was to irradiate a block of plastic scintillator as a phantom, and to measure the distribution of the scintillation light by a wave length analyzer through a thread of plastic optical fiber. By irradiating the diagnostic x-ray, we observed the emission spectrum of the scintillation light from the scintillator. It showed a peak at around 420nm with a full width of 140 nm. The emission spectrum was integrated to determine the total number of photons. The dependences of the amount of photons on the irradiated dose were measured. The results of the experiment show that the amount of emission light is in proportional to the irradiated dose. From this fact, we conclude that the present method can be used for the measurement of the depth dose distribution of the diagnostic x-rays. -
Vahc, Young-Woo;Park, Kwangyl;Ohyun Kwon;Park, Kyung-Ran;Lee, Yong-Ha;Yi, Byung-Yong;Kim, Sookil 248
The intensity modulated radiation therapy (IMRT) with a multileaf collimator (MLC) requires the conversion of a radiation fluence map into a leaf sequence file that controls the movement of the MLC during radiation treatment of patients. Patient dose verification is clinically one of the most important parts in the treatment delivery of the radiation therapy. The three dimensional (3D) reconstruction of dose distribution delivered to the target helps to verify patient dose and to determine the physical characteristics of beams used in IMRT. A new method is presented for the pretreatment dosimetric verification of two dimensional distributions of photon intensity by means of Beam Intensity Scanner System (BISS) as a radiation detector with a custom-made software for dose calculation of fluorescence signals from scintillator. The scintillator is used to produce fluorescence from the irradiation of 6MV photons on a Varian Clinac 21EX. The BISS reproduces 3D- relative dose distribution from the digitized fluoroscopic signals obtained by digital video camera-based scintillator(DVCS) device in the IMRT. For the intensity modulated beams (IMBs), the calculations of absorbed dose are performed in absolute beam fluence profiles which are used for calculation of the patient dose distribution. The 3D-dose profiles of the IMBs with the BISS were demonstrated by relative measurements of photon beams and shown good agreement with radiographic film. The mechanical and dosimetric properties of the collimating of dynamic and/or step MLC system alter the generated intensity. This is mostly due to leaf transmission, leaf penumbra and geometry of leaves. The variations of output according to the multileaf opening during the irradiation need to be accounted for as well. These phenomena result in a fluence distribution that can be substantially different from the initial and calculative intensity modulation and therefore, should be taken into account by the treatment planning for accurate dose calculations delivered to the target volume in IMRT. -
Fukumura, Akifumi;Kanai, Tatsuaki;Kanematsu, Nobuyuki;Yusa, Ken;Maruhashi, Akira;Nohtomi, Akihiro;Nishio, Teiji;Shimbo, Munefumi;Akagi, Takashi;Yanou, Toshihiro;Fukuda, Shigekazu;Hasegawa, Takashi;Kusano, Yohsuke;Masuda, Yasutaka 252
A new protocol for dosimetry in external beam radiotherapy is published by the Japan Society of Medical Physics (JSMP) in 2002. The protocol deals with proton and heavy ion beams as well as photon and electron beams, in accordance with IAEA Technical Report Series No. 398. To establish inter-institutional uniformity in proton beam dosimetry, an intercomparison program was carried out with the new protocol. The absorbed doses are measured with different cylindrical ionization chambers in a water phantom at a position of 30-mm residual range for a proton beam, that had range of 155 mm and a spread out Bragg peak (SOBP) of 60-mm width. As a result, the intercomparison showed that the use of the new protocol would improve the +/- 1.0 % (one standard deviation) and 2.7 % (maximum discrepancy) differences in absorbed doses stated by the participating institutions to +/- 0.3% and 0.9 %, respectively. The new protocol will be adopted by all of the participants. -
Saitoh, Hidetoshi;Tomaru, Teizo;Fujisaki, Tatsuya;Abe, Shinji;Myojoyama, Atsushi;Fukuda, Kenichi 255
To reduce the uncertainty in the calibration of radiation beams, absorbed dose to water for high energy electrons is recommended as the standards and reference absorbed dose by AAPM Report no.51 and IAEA Technical Reports no.398. In these recommendations, water is, defined as the reference medium, however, the water substitute solid phantoms are discouraged. Nevertheless, when accurate chamber positioning in water is not possible, or when no waterproof chamber is available, their use is permitted at beam qualities R$\_$ 50/ < 4 g/cm$^2$ (E$\_$ 0/ < 10 MeV). For the electron dosimetry using solid phantom, a depth-scaling factor is used for the conversion of depth in solid phantoms to depth in water, and a fluence-scaling factor is used for the conversion of ionization chamber reading in plastic phantom to reading in water. In this work, the properties, especially depth-scaling factors c$\_$ p1/ and fluence-scaling factors h$\_$ pl/ of several commercially available water substitute solid phantoms were determined, and the electron dosimetry using these scaling method was evaluated. As a result, it is obviously that dose-distribution in solid phantom can be converted to appropriate dose-distribution in water by means of IAEA depth-scaling. -
Kurooka, Masahiko;Koyama, Syuji;Obata, Yasunori;Homma, Mitsuhiko;Imai, Kuniharu;Tabushi, Katsuyoshi 260
An accurate measurement of dose distribution is indispensable to perform radiation therapy planning. A measurement technique using a radiographic film, which is called a film dosimetry, is widely used because it is easy to obtain a dose distribution with a good special resolution. In this study, we tried to develop an analyzing system for the film dosimetry using usual office automation equipments such as a personal computer and an image scanner. A film was sandwiched between two solid water phantom blocks (30${\times}$ 30${\times}$ 15cm). The film was exposed with Cobalt-60${\gamma}$ -ray whose beam axis was parallel to the film surface. The density distribution on the exposed film was stored in a personal computer through an image scanner (8bits) and the film density was shown as the digital value with NIH-image software. Isodose curves were obtained from the relationship between the digital value and the absorbed dose calculated from percentage depth dose and absorbed dose at the reference point. The isodose curves were also obtained using an Isodose plotter, for reference. The measurements were carried out for 31cGy (exposure time: 120seconds) and 80cGy (exposure time: 300seconds) at the reference point. While the isodose curves obtained with our system were drawn up to 60% dose range for the case of 80cGy, the isodose curves could be drawn up to 80% dose range for the case of 31cGy. Furthermore, the isodose curves almost agreed with that obtained with the isodose plotter in low dose range. However, further improvement of our system is necessary in high dose range. -
Iwasaki, Akira;Matsutani, Hideya;Kubota, Mamoru;Fujimori, Akira;Suzaki, Katsumasa;Abe, Yoshinao 263
We have developed a practical method for estimating high-energy x-ray spectra using measured attenuation curves. This method is based on the iterative perturbation technique proposed by Waggener et al. The principle is to minimize the difference between the measured and calculated transmission curves. The experimental study was made using 4 MV, 10 MV, and 15 MV x-ray beams. It has been found that the spectrum varies strongly with the off-axis distance. -
Yamaguchi, Hiroshi;Ssto, Yukio;Imaseki, Hitoshi;Yasuda, Nakahiro;Hamano, Tsuyoshi;Furusawa, Yoshiya;Suzuki, Masao;Ishikawa, Takehiro;Mori, Teiji;Matsumoto, Kenichi;Konishi, Teruaki;Yukawa, Masae;Soga, Fuminori 267
Microbeam is a new avenue of radiation research especially in radiation biology and radiation protection. Selective irradiation of an ionizing particle to a targeted cell organelle may disclose such mechanisms as signal transaction among cell organelles and cell-to-cell communication in the processes toward an endpoint observed. Bystander effect, existence of which is clearly evidenced by application of the particle microbeam to biological experiments, suggests potential underestimation in the conventional risk estimation at low particle fluence rates, such as environment of space radiations in ISS (International Space Station). To promote these studies we started the construction of our microbeam facility (named as SPICE) to our HVEE Tandem accelerator (3.4 MeV proton and 5.1 MeV$^4$ He$\^$ 2+/). For our primary goal, "irradiation of single particle to cell organelle within a position resolution of 2 micrometer in a reasonable irradiation time", special features are considered. Usage of a triplet Q magnet for focussing the beam to submicron of size is an outstanding feature compared to facilities of other institutes. Followings are other features: precise position control of cell dish holder, design of the cell dish, data acquisition of microscopic image of a cell organelle (cell nucleus) and data processing, a reliable particle detection, soft and hard wares to integrate all these related data, to control and irradiate exactly determined number of particles to a targeted spot. -
Nishizawa, Kanae;Moritake, Takashi;Iwai, Kazuo;Matsumaru, Yuji;Tsuboi, Koji;Maruyama, Takashi 269
It is reported that exposure for the patient and the medical staff from IVR is large. Direct measurement of patient exposure is difficult, since the measurement disturbs reading of images. The fluorescence glass-dosimeter system consisting of small-size glass chips is developed in recent years. Owing to its small size and physical characteristics, direct monitoring of surface dose may be feasible. The dose measurement for patient and medical staff during head interventional radiology (IVR) examinations was tried by using the fluorescence glass-dosimeter system. A dose response of the glass dosimeter is almost linear in large dose range but its energy dependency is high. About 20% variation of sensitivity was observed in the effective energy of 45-60keV which was used in IVR. In spite of this shortcoming, the fluorescence glass-dosimeter system is a convenient means for a dose monitoring during IVR performance. -
Fujisaki, Tatsuya;Saitoh, Hidetoshi;Hiraoka, Takeshi;Kuwabara, Akio;Abe, Shinji;Inada, Tetsuo 272
The contribution of light in high-energy film dosimetry was examined using six commercially available solid water substitute phantoms. As six commercially available phantoms; RMI-451, Mix-DP, WE211, WE211-Black, PMMA and PMMA Black were evaluated in this study. It is difficult to evaluate the contribution of Cerenkov radiation and the optical permeability to the relative and/or absolute dosimetry using unpacked film in these phantoms. Therefore the contribution of Cerenkov radiation was estimated by the comparison between film densities in the shielded side (shutting off the light) and unshielded sides on a phantom. The effect of optical permeability was measured under ambient light by the time scale method. The results suggest that the use of black colored phantoms may improve the accuracy of dose measurement in film dosimetry. -
Wada, Shinichi;Kobayashi, Tsuneo;Katayama, Yoshiro;Iwami, Toshiaki;Kato, Tsuguhisa;Cameron, John R. 275
The recognition of the natural background radiation is important not only for radiological education but also for the promotion of people's scientific view about radiation. We made a "room" on the web showing natural background radiation as part of a VRM (Virtual Radiation Museum). The "room" shows the video images of the tracks of charged particles from natural background radiation, alpha and beta ray track from known sources using a Large Scale Diffusion Cloud Chamber. The purpose of this study is to make clear the origin of a kind of track (named A-track) which is thick and easy to recognize with the length less than several cm in the cloud chamber, and to make numerical explanation of its counting rate. The study was carried out using a Large Scale Diffusion Cloud Chamber (Phywe, Germany) installed in the Niigata Science Museum. The Model RNC (Pylon Electronics, Canada) was used as Rn-222 source. Ra-226 activity in RNC was 111.6 Bq calibrated with NIST protocol. Rn-222 gas was injected into the cloud chamber. Continuous video recording with use of Digital Handycam (SONY, Japan) was carried out for 360 min. after injection of Rn-222 gas. The number of alpha-ray track (alpha track) in the video images was analyzed. The growth and decay curve of the total activity of Rn-222 and its alpha emitting progeny were calculated and compared with the count of the alpha tracks. As a result the alpha tracks formed by Rn-222 injection resemble A-Tracks. The relationship between A-track in the cloud chamber and atmospheric Rn is discussed. -
The results of the specific radioactivity study for Rn-222 in mineral spring water of Khalzan mountain and Janchivlan of Mongolia, using the HP-Ge gamma-spectrometer, are discussed. Some physical and chemical properties in some sample of mineral spring water are determined.
-
Park, Kwangyl;Vahc, Young-Woo;Ohyun Kwon;Park, Kyung-Ran;Lee, Yong-Ha;Yi, Byung-Yong;Kim, Sookil 282
We have developed and used BISS as a radiation detector to verify patient dose and determine the physical characteristics of beams used in Stereotatic Radio Surgery(SRS) and Intensity Modulated Radiation Therapy(IMRT). In order to confirm the function and accuracy of our BISS, we simulate our measurements by BISS under the radiation of 6MV photons from a Varian Clinac 21EX equipped with a 60 leaf pairs MLC. For the simulation based on the Monte Carlo algorithm, which remains the most comprehensive and accurate theoretical method to verify beam profiles, we use the BEAM code. Compared with the measurements by BISS, our simulation of variously shaped phantom measurements show good agreements. Our simulation results can be used as a theoretical standard to compare and confirm measurements by BISS and other dosimeters such as ultramicro cylindrical ionization chamber(UCIC) and radiographic film. -
In this study, we investigate electron transport properties in xenon gas by using a Monte Carlo technique for electrons with energies below 10 keV. First of all, we determine a set of electron collision cross sections with xenon by scrutinizing the cross section data taken from many publications. Then, the W value and the Fano factor for electrons in gaseous xenon are computed by the Monte Carlo simulation on the assumption that electrons undergo single collision events including elastic, excitation and ionization processes. We also evaluate the production number of excited atoms.
-
Accurate dose calculation in radiation treatment planning is most important for successful treatment. Since human body is composed of various materials and not an ideal shape, it is not easy to calculate the accurate effective dose in the patients. Many methods have been proposed to solve the inhomogeneity and surface contour problems. Monte Carlo simulations are regarded as the most accurate method, but it is not appropriate for routine planning because it takes so much time. Pencil beam kernel based convolution/superposition methods were also proposed to correct those effects. Nowadays, many commercial treatment planning systems, including Pinnacle and Helax-TMS, have adopted this algorithm as a dose calculation engine. The purpose of this study is to verify the accuracy of the dose calculated from pencil beam kernel based treatment planning system Helax-TMS comparing to Monte Carlo simulations and measurements especially in inhomogeneous region. Home-made inhomogeneous phantom, Helax-TMS ver. 6.0 and Monte Carlo code BEAMnrc and DOSXYZnrc were used in this study. Dose calculation results from TPS and Monte Carlo simulation were verified by measurements. In homogeneous media, the accuracy was acceptable but in inhomogeneous media, the errors were more significant.
-
Katoh, Tsuguhisa;Saitoh, Hidetoshi;Ohtani, Hiroki;Negishi, Tooru;Myojoyama, Atsushi;Ohno, Yuusuke;Sasaki, Takehito 294
For the quality control procedure of diagnostic x ray units, a method for simultaneous measurement of air kerma, half value layer and tube potential was developed utilizing a computed radiography system for intraoral radiography and film badge case. The response of average pixel values under the windows were calibrated by x rays generated at tube potentials from 40 to 140 kV with filtration from 1.5 to 3.7 mmAl. The calibration curves for half value layer and tube potential were derived as functions of attenuation factors by the 1.4 mmAl filter and the 0.2 mmCu filter. The energy dependency of the open window response was corrected by the calibration factor as a function of the attenuation factor by the 1.4 mmAl filter. The uncertainty of the estimated half value layer, tube potential and air kerma were 0.2 mmAl, 3.6 % and 5 %, respectively. It was thus suggested that this system could be applied to quality control program to detect the variation of working condition of x ray units in clinical use. -
WERC (Wakasa Wan Energy Research Center) has started the proton cancer therapy since June 2002. We use Hitachi 3D treatment planning (version 1.6) that can calculate the proton dose distribution by use of the pencil beam algorithm as well as the broad beam algorithm practically fast. This treatment planning software satisfies almost functions required in the proton therapy and includes some advanced techniques such as the 3D region glowing function that can search the target region three-dimensionally based on the CT-values. In this paper, we will introduce this planning system and present our evaluation from point of view of both clinical usage and QA.
-
Of many modalities for measuring output factor, we measured the outputs of 18mm, 14mm, 8mm and 4mm helmet in Gamma knife using ion chambers and a Gafrcromic MD-55 film and normalized the outputs of four helmets the one of a 18mm helmet. Ion chambers used for this paper were a PR-05P and a PinPoint having a volume of 0.07cc and 0.015cc respectively. The recommended output factors from a manufacture were 1, 0.984, 0.956, and 0.87. For PR-05P, the output factor of 14mm helmet showed a good agreement, but the ones of 8mm and 4mm helmet showed the difference of 4.6% and 47% respectively. For PinPoint, The output factors of 14mm and 8mm helmet showed a good agreement, but the one of a 4mm helmet showed a difference of 18%. The Gafcromic MD-55, however, showed a good agreement for all helmets.
-
In linac-based stereotactic radiosurgery, assuring the quality of the planning and delivery of external photon beam requires accurate evaluation of beam parameters, usually including output factors, tissue-phantom ratio and off-axis ratios, and measurement of actual dose distributions from simulated treatment. We're going to test the use of calibrated radio chromic film (Gafchromic film; type MD-55, Nuclear associate) using a Lumiscan 75 digitizer to measure absolute dose and relative dose distributions for linac-based radiosurgery unit Relative dose distribution of a human-style spherical acryl phantom were measured using radiochromic film and calculated by treatment planning system. The absolute dose at the sphere center was measured by radiochromic film and micro chamber (Exradin A-14, 0.009cc). What we want to demonstrate in this work, the 'well selected' radiochromic films when external photon beam are used in linac-based stereotactic radiosurgery are very accurate detector for dosimetry.
-
More complex radiotherapy techniques using multi leaf collimation(MLC) such as intensity-modulated radiation therapy(IMRT) has been increasing the significance of verification of leaf position and motion. Due to the reliability and robustness, quality assurance(QA) of MLC is usually performed with portal films. However, the advantage of ease of use and capability of providing digital data of electronic portal imaging devices(EPIDs) have attracted many attentions as alternatives of films for routine quality assurance in spite of the concerns about their clinical feasibility, efficacy, and the cost to benefit ratio. In our work, the method of routine QA of MLC using electronic portal imaging(EPI) was developed. The verification of availability of EPI images for routine QA was performed by comparison with those of the portal films which were simultaneously obtained when radiation was delivered and known prescription input to MLC controller. Specially designed test patterns of dynamic MLC were applied to image acquisition. Quantitative off-line analysis using edge detection algorithm enhanced the verification procedure in addition to on-line qualitative visual assessment. In conclusion, the EPI is available enough for routine QA with the accuracy of portal films.
-
We are under development of a 3D PET scanner with depth of interaction (DOI) capable of high sensitivity and high resolution. In this scanner, a maximum data transfer rate of coincidence pair's event information is 10 Mcps and one event is a 64-bit data format. This maximum data transfer rate corresponds by 10 times a conventional PET scanner. A data acquisition system, which fulfills the specification of this scanner, is considered for parallel collection with banks including several coincidence units. Data transfer rate is improved by optimizing parameters of a message size, and so on.
-
Son, Hye-Kyung;Mijin Yun;Kim, Dong-Hyeon;Haijo Jung;Lee, Jong-Doo;Yoo, Hyung-Sik;Kim, Hee-Joung 314
The purpose of this study was to evaluate the clinical application of Patlak tool on GE PET workstation for quantitative analysis of dynamic PET images in cardiac patients. Three patients including coronary artery disease (CAD), myocardial infarction (MI), and angina were studied. All subjects underwent dynamic cardiac PET scan using a GE Advance scanner. After 10 min transmission scan for attenuation correction using two rotating$\^$ 68/Ge rod sources, three patients with cardiac disease were performed dynamic cardiac PET scan after the administration of approximately 370 MBq of FDG. The dynamic scan consisted of 36 frames with variable frame length (12${\times}$ 10s, 6${\times}$ 20s, 6${\times}$ 60s, 12${\times}$ 300s) for a total time of 70 min. Blood samples were obtained to determine the plasma substrate concentration. Region of interest of circular and rectangular shape to acquire input functions and tissue data were placed on left ventricle and myocardium. A value of 0.67 was used for lumped constant. Mean plasma substrate concentrations for three patients were 100 mg/dl (CAD), 100 mg/dl (MI), 132 mg/dl (angina), respectively. Regional MMRGlc values (mean${\pm}$ SD) at lateral myocardium area for CAD, MI, and angina were 8.43${\pm}$ 0.24, 4.08${\pm}$ 0.16, and 6.15${\pm}$ 0.23 mg/min/100ml, respectively. Patlak tool on GE PET workstation appeared to be useful for quantitative analysis of dynamic PET images in cardiac patients, although further studies may be required for absolute quantitation. -
Tsuda, Tomoaki;Murayama, Hideo;Kawai, Hideyuki;Inadama, Naoko;Umehara, Takaya;Kasahara, Takehiro;Orita, Narimichi 318
As a part of the next generation PET project, we have developed a depth of interaction detector which is consist of three-dimensional arrays of GSO crystal elements sized 2.9mm${\times}$ 2.9mm${\times}$ 7.5mm. The basic structure of a detector block is 4-stages in depth, one stage is composed of 2 by 2 array of the crystal elements. The blocks are optically coupled to a position sensitive photomultiplier tube. Each crystal element can be in different conditions; rough or chemical etching for the crystal surface. The effect of the difference of crystal surface condition on the detector performance was analyzed in one-dimensional crystal array as a basic study for the three-dimensional detector by a simple model which is considered only probabilities of transmission, reflect and absorption of photons are in a crystal. As the next step, we investigated the effect of different crystal surface condition in a "U shaped detector" which is an array of stacked crystals bending at the center. -
Partial volume averaging effect of PET data influences on the accuracy of quantitative measurements of regional brain metabolism because spatial resolution of PET is limited. The purpose of this study was to evaluate the accuracy of partial volume correction carried out on
$^{18}$ F-PET images using Hoffman brain phantom.$^{18}$ F-PET Hoffman phantom images were co-registered to MR slices of the same phantom. All the MR slices of the phantom were then segmented to be binary images. Each of these binary images was convolved in 2 dimensions with the spatial resolution of the PET. The original PET images were then divided by the smoothed binary images in slice-by-slice, voxel-by-voxel basis resulting in larger PET image volume in size. This enlarged partial volume corrected PET image volume was multiplied by original binary image volume to exclude extracortical region. The evaluation of partial volume corrected PET image volume was performed by region of interests (ROI) analysis applying ROIs, which were drawn on cortical regions of the original MR image slices, to corrected and original PET image volume. From the ROI analysis, range of regional mean values increases of partial volume corrected PET images was 4 to 14%, and average increase for all the ROIs was about 10% in this phantom study. Hoffman brain phantom study was useful for the objective evaluation of the partial volume correction method. This MR-based correction method would be applicable to patients in the. quantitative analysis of FDG-PET studies. -
Orita, Narimichi;Murayama, Hideo;Kawai, Hideyuki;Inadama, Naoko;Umehara, Takaya;Kasahara, Takehiro;Tsuda, Tomoaki 324
For a next generation PET that realizes high sensitivity and high resolution, we proposed a design of a depth of interaction detector. A unit of the detector is constructed of four stages rectangular blocks of 2 by 2 Gd$_2$ SiO$\sub$ 5/: Ce (GSO) crystal array optically coupled to position sensitive photomultiplier tube (PS-PMT). The 256ch flat panel PS-PMT is under development by Hamamatsu Photonics K.K., JAPAN. It has large cathode area, 51.7 by 51.7 mm$^2$ , and the ratio of the effective area to external size is about 90%. The feature will contribute high packing fraction, accordingly high sensitivity. The 256 anodes are arranged in 16 by 16 at intervals of 3.0 mm. So as to evaluate the detector capability for identifying crystal of interaction, we got positioning image histograms with coupling a 16 by 5 array of GSO crystals, 2.9 by 2.9 by 7.5 mm$^3$ , to the PS-PMT by irradiating a gamma ray uniformly from a point source. Flat panel PS-PMT is a new promising device for PET. We need to evaluate it if its performance is sufficiency. The performance was compared to the one with a 16ch PS-PMT. -
Joh, Chul-Woo;Park, Chan H.;Lee, Myoung-Hoon;Yoon, Seok-Nam;Kim, Mi-Hwa;Jang, Ji-Sun;Park, Kyung-Bae 328
Large balloon angio catheter is used for Percutaneous Transluminal Angioplsty(TPA) of the iliac, femoral and renal arteries as well as after Transjugular Intrahepatic portosystemic shunt(TIPS). The use of angioplasty balloon filled with liquid form of radioisotope reduces the rate of restenosis after PTA. The purpose of this study was to evaluate the absorbed dose to the target vessels from various sized large balloon filled with liquid form of Ho-166-DTPA. Four balloons of balloon dilatation catheters evaluated were 5, 6, 8 and 10 mm in diameter. GafChromic film was used for the estimation of the absorbed dose near the surface of the balloon catheters. Absorbed dose rates are plotted in units of Gy/min/GBq/ml as a function of radial distance in mm from the surface of balloon. The absorbed dose rate was 1.1, 1.6, 2.2 and 2.3 Gy/min/GBq/ml at a balloon surface, 0.3, 0.4, 0.5 and 0.6 Gy/min/GBq/ml at 1 mm depth for various balloon diameter 5, 6, 8 and 10 mm in diameter respectively. The study was conducted to estimate the absorbed doses to the vessels from various sized large balloons filled with liquid form of Ho-166-DTPA for clinical trial of radiation therapy after the PTA. The absorbed dose distribution of Ho-166 appeared to be nearly ideal for vascular irradiation since beta range is very short avoiding unnecessary radiation to surrounding normal tissues. -
It has been reported that maximum-likelihood position-estimation (MLPE) algorithms offer advantages of improved spatial resolution and linearity over conventional Anger algorithm in gamma cameras. The purpose of this study is to evaluate the performances of the noise models, Poisson and Gaussian, in MLPE for the localization of photons in a small gamma camera (SGC) using NaI(Tl) plate and PSPMT. The SGC consists of a single NaI(Tl) crystal, 10 cm diameter and 6 mm thick, optically coupled to a PSPMT (Hamamatsu R3292-07). The PSPMT was read out using a resistive charge divider, which multiplexes 28(X) by 28(Y) cross wire anodes into four channels. Poisson and Gaussian based MLPE methods have been implemented using experimentally measured light response functions. The system resolutions estimated by Poisson and Gaussian based MLPE were 4.3 mm and 4.0 mm, respectively. Integral uniformities were 29.7% and 30.6%, linearities were 1.5 mm and 1.0 mm and count rates were 1463 cps and 1388 cps in Poisson and Gaussian based MLPE, respectively. The results indicate that Gaussian based MLPE, which is convenient to implement, has better performances and is more robust to statistical noise than Poisson based MLPE.
-
The aim of this study was investigate the epileptogenic zone in temporal lobe epilepsy (TLE). We evaluated the subtraction image of interictal SPECT from ictal SPECT coregistered to 3-dimensional (3D) MRI, and compared with the normal healthy SPECT using a SPM99. Forty-nine patients with TLE (M:F=28:21, mean age: 33
${\pm}$ 2.1 years) underwent a pairs of ictal and interictal SPECT. We performed subtraction interictal SPECT from ictal SPECT in TLE patients. In addition, using SPM methods and t-statistics, SPECT images of the TLE patients were compared with normal healthy SPECT on a voxel by voxel basis. The voxels with a p-value of less than 0.05, 0.005, 0.001 were considered to be significantly different. The subtraction results by ictal and interictal SPECT coincided with the significant rCBF changes when compare of the normal healthy SPECT using a SPM99. The results suggested that analysis of difference of the two methods using healthy normal SPECT with SPM99 is useful tool in evaluation of seizure focus in epilepsy. -
Neurodegenerative disorders, like Alzheimer's disease, are often accompanied by reduced brain perfusion (cerebral blood flow). Using the intrinsic magnetic properties of water, arterial spin labeling magnetic resonance imaging (ASLMRI) can map brain perfusion without injection of radioactive tracers or contrast agents. However, accuracy in measuring perfusion with ASL-MRI can be limited because of contributions to the signal from stationary spins and because of signal modulations due to transient magnetic field effects. The goal was to optimize ASL-MRI for perfusion measurements in the aging human brain, including brains with Alzheimer's disease. A new ASL-MRI sequence was designed and evaluated on phantom and humans. Image texture analysis was performed to test quantitatively improvements. Compared to other ASL-MRI methods, the newly designed sequence provided improved signal to noise ratio improved signal uniformity across slices, and thus, increased measurement reliability. This new ASL-MRI sequence should therefore provide improved measurements of regional changes of brain perfusion in normal aging and neurodegenerative disorders.
-
Choe, Bo-Young;Baik, Hyun-Man;Chu, Myung-Ja;Jeun, Sin-Soo;Kang, Sei-Kwon;Chung, Sung-Taek;Park, Chi-Bong;Oh, Chang-Hyun;Lee, Hyoung-Koo 345
The purpose of this study was to assess clinical proton MR spectroscopy (MRS) as a noninvasive method for evaluating brain tumor malignancy at 3T high field system. Using 3T MRI/MRS system, localized water-suppressed single-voxe1 technique in patients with brain tumors was employed to evaluate spectra with peaks of N-acetyl aspartate (NAA), choline-containing compounds (Cho), creatine/phosphocreatine (Cr) and lactate. On the basis of Cr, these peak areas were quantificated as a relative ratio. The variation of metabolites measurements of the designated region in 10 normal volunteers was less than 10%. Normal ranges of NAA/Cr and Cho/Cr ratios were 1.67${\pm}$ 018 and 1.16${\pm}$ 0.15, respectively. NAA/Cr ratio of all tumor tissues was significantly lower than that of the normal tissues (p=0.005), but Cho/Cr ratio of all tumor tissue was significantly higher (p=0.001). Cho/Cr ratio of high-grade gliomas was significantly higher than that of low-grade gliomas (P=0.001). Except 4 menigiomas, lactate signal was observed in all tumor cases. The present study demonstrated that the neuronal degradation or loss was observed in all tumor tissues. Higher grade of brain tumors was correlated with higher Cho/Cr ratio, indicating a significant dependence of Cho levels on malignancy of gliomas. Our results suggest that clinical proton MR spectroscopy could be useful to predict tumor malignancy. -
Choe, Bo-Young;Jeun, Sin-Soo;Kang, Sei-Kown;Park, Gi-Soon;Chung, Sung-Taek;Yoo, Seung-Schik;Chu, Myung-Ja;Lee, Hyoung-Koo;Suh, Tae-Suk 352
The purpose of this study was to investigate whether or not acupuncture of GB34 produces a significant response of the modulation of somatomotor areas by functional magnetic resonance imaging (fMRI) study. The acupoint, GB34, located in the back of the knee, is known to be effective in recovering motor function after stroke. Using 3T MRI scanner, functional MR imaging of the whole brain was performed in 12 normal healthy subjects during two stimulation paradigms; acupuncture manipulation on GB 34 and sham points. This study investigates the activation of the mortor cortex elicited by a soft and an intensified stimulation of GB 34. Three different paradigms were carried out to detect any possible modulation of the Blood Oxygenation Level Dependent (BOLD) response in the somatomortor area to motor stimulation through acupuncture. Group analysis from seven individuals showed that bilateral sensorimotor areas (BA 3,4,6 and 7) showed stimulation related BOLD signal contrast of approximately 6% whereas very few areas were activated when sham stimulation is given. The present study shows that acupuncture fMRI study can be safely conducted in 3T MRI environment, and acupuncture stimulation in GB34 modulates the cortical activities of the somatomotor area in human. The present findings may shed light on the CNS mechanism of motor function by acupuncture and form a basis for future investigations of motor modulation circuits in the stroke patients. -
MRI, particularly diffusion weighted imaging (DWI), plays vital roles in detection of the acute brain infarction
$\^$ 1-4/ and others metabolic changes of biological tissues. In general, every molecule in biological tissues may diffuse and move randomly in three-dimensional space. However, in clinical diagnosis, only 2D-DWI is used. The authors have developed a new method for rapid three-dimensional DWI (3D-DWI). In this method, by refocusing of the magnetized spin with the applied gradient field, direction of which is opposite to phase encoding field. Magnetized spin of$^1$ H is kept under the SSFP (steady state free precession)$\^$ 5-6/. Under SSFP, in addition of FID, spin echo and stimulated echo are also generated, so the acquired signal is increased. The signal intensity is increased depending on flip angle (FA) of magnetized spin. This phenomenon is confirmed by human brain and phantom studies. The performance of this method is quantitatively analyzed by using both of conventional spin echo DWI and 3D-DWI. From experimental results, three dimensional diffusion weighted images are obtained correctly for liquid phantoms (water, acetone and oil), diffusion coefficient is enhanced in each image. Therefore, this method will provide useful information for clinical diagnosis. -
Brain Stimulator processes both visual and audible stimulus and send them human sensory organ. The stimulus was accepted by our sensory organ effect upon human mental function. In this study, we examine the actual effect of commercial brain stimulator using tMRI system.
-
Kang, Won-Suk;Park, Byoung-Wook;Choe, Kyu-Ok;Lee, Sang-Ho;Soonil Hong;Haijo Jung;Kim, Hee-Joung 360
Myocardial tagging technique such as spatial modulation of magnetization (SPAMM) allows the study of myocardial motion with high accuracy. Tagging contrast of such a tagging images can affect to the accuracy of the estimation of tag intersection in order to analyze the myocardial motion. Tagging contrast can be affected by tagline spacing. The aim of this study was to investigate the relationship between tagline spacing of SPAMM image and tagging contrast-to-noise ratio (CNR) experimentally. One healthy volunteer was undergone electrocardiographically triggered MR imaging with SPAMM-based tagging pulse sequence at a 1.5T MR scanner (Gyroscan Intera, Philips Medical System, Netherland). Horizontally modulated stripe patterns were imposed with a range from 3.6mm to 9.6mm of tagline spacing. Images of the left ventricle (LV) wall were acquired at the mid-ventricle level during cardiac cycle with FEEPI (TR/TE/FA=5.8/2.2/10). Tagging CNR for each image was calculated with a software which developed in our group. During contraction, tagging CNR was more rapidly decreased in case of short tagline spacing than in case of long tagline spacing. In the same heart phase, CNR was increased corresponding with tag line spacing. Especially, at the fully contracted heart phase, CNR was more rapidly increased than the other heart phases as a function of tagline spacing. -
Chu, Myung-Ja;Choe, Bo-Young;Kim, Kyung-Nam;Chung, Sung-Taek;Oh, Chang-Hyun;Lee, Hyoung-Koo;Suh, Tae-Suk 363
We describe quadrature type surface coil for functional magnetic resonance imaging at 3T MRI system. The coil consisted of two coplanar resonators and was used as both transmitter and receiver. The signal-to-noise ratio (SNR) of the coil was compared with that of a standard birdcage head coil. Visual cortex activation on normal subjects using LED flicker was performed. The SNR of surface coil was found to be better than that of the conventional head coil. -
Chu, Myung-Ja;Choe, Bo-Young;Kim, Kyung-Nam;Chung, Sung-Taek;Oh, Chang-Hyun;Lee, Hyoung-Koo;Suh, Tae-Suk 365
A novel TEM resonator coil was developed for the imaging of small animals. The functional elements of the TEM resonator were 8 inner conductors, distributed in a cylindrical pattern and connected at the ends with capacitors to the cylindrical outer shield. The TEM resonator coil with cavity elements was robust to the surrounding influences due to the self-shielding structure. The TEM resonator coil with high Q factor could provide high quality MR images at 3.0T MRI system. Also, the TEM resonator coil has an advantage for a fine tune with length adjustment of each cavity elements. Thus, The TEM resonator coil at 3.0T, even higher field could be used in the research studies. -
We have designed ramp profile excitation pulse based on the Shinnar-Le Roux (SLR) algorithm. The algorithm provides many advantages to pulse designers. The first advantage is the freedom of deciding the amplitudes, frequencies, and ripple sizes of stopband, passband, and transition band of pulse profile. The second advantage is the freedom of deciding the pulse phase, more specifically, minimum phase, linear phase, maximum phase, and any phase between them. The minimum phase pulse is the best choice in the case of 3D TOF, because it minimizes the echo time, which implies the best image quality in the same MR examination condition. In addition, the half echo technique is slightly modified in our case. In general, using the half echo technique means that the acquired data size is half and the rest part can be filled with complex conjugate of acquired data. But in our case, the echo center is just shifted to left, which implies the reduction of echo time, and the acquired data size is the same as the one without using the half echo technique. In this case, the increase of right part of data leads to improvement of the resolution and the decrease of left part of data leads to decrease of signal to noise ratio. Since in the case of 3D TOF, the signal to noise ratio is sufficiently high and the resolution is more important than signal to noise ratio, the proposed method appears to be significantly affective and gives rise to the improved high resolution angiograms.
-
Endo, Masahiro;Mori, Shinichiro;Tsunoo, Takanori;Kandatsu, Susumu;Tanada, Shuji;Aradate, Hiroshi;Saito, Yasuo;Miyazaki, Hiroaki;Satoh, Kazumasa;Matsusita, Satoshi;Kusakabe, Masahiro 373
4D CT is a dynamic volume imaging system of moving organs with an image quality comparable to conventional CT, and is realized with continuous and high-speed cone-beam CT. In order to realize 4D CT, we have developed a novel 2D detector on the basis of the present CT technology, and mounted it on the gantry frame of the state-of-the-art CT-scanner. In the present report we describe the design of the first model of 4D CT-scanner as well as the early results of performance test. The x-ray detector for the 4D CT-scanner is a discrete pixel detector in which pixel data are measured by an independent detector element. The numbers of elements are 912 (channels)${\times}$ 256 (segments) and the element size is approximately 1mm${\times}$ 1mm. Data sampling rate is 900views(frames)/sec, and dynamic range of A/D converter is 16bits. The rotation speed of the gantry is l.0sec/rotation. Data transfer system between rotating and stationary parts in the gantry consists of laser diode and photodiode pairs, and achieves net transfer speed of 5Gbps. Volume data of 512${\times}$ 512${\times}$ 256 voxels are reconstructed with FDK algorithm by parallel use of 128 microprocessors. Normal volunteers and several phantoms were scanned with the scanner to demonstrate high image quality. -
Mori, Shinichiro;Endo, Masahiro;Tsunoo, Takanori;Kandatsu, Susumu;Tanada, Shuzi;Aradate, Hiroshi;Saito, Yasuo;Miyazaki, Hiroaki;Satoh, Kazumasa;Matsusita, Satoshi;Kusakabe, Masahiro 376
This work was carried out to evaluate the basic performances for 4D CT, which employed continuously rotating conebeam. The performances were evaluated with the same method as the conventional CT, because the standard method of evaluating 4D CT has not yet been established, and we think this result was helpful to establish it. 4D CT can give dynamic volume imaging data continuously and with high-speed. The results were isotropic except for the evaluation of distortion in which small distortions gradually appeared as coming off the center of phantom in longitudinal direction. -
A single CdZnTe detector is tested for suitability in a prototype CT/ SPECT system designed to acquire both emission and transmission data. The detector has the size of 1
${\times}$ l-cm$^2$ with 4${\times}$ 4 1.5${\times}$ l.5mm$^2$ pixellated anodes. Since the detector is smaller than imaged object, we translated it in an arc centered at the x-ray tube to image larger objects. Pulse counting electronics with very short shaping time (50 ns) are used to satisfy high photon rates in x-ray imaging, and response linearity up to 3${\times}$ 10$\^$ 5/ counts per second per detector element is achieved. The energy resolution of 122-keV gamma-ray is measured to be 14%. We have characterized the system performance by scanning a radiographic resolution phantom .and the Hoffman brain phantom. The spatial resolution of CT and SPECT are about 1 mm and 7 mm, respectively. -
Filtered-Back-Projection technique is used in X-ray CT image reconstruction. This requires X-ray transmission data from all directions. As the transverse cross-section of the body is approximately 50 cm, transmitted X-rays in this direction are strongly attenuated. If X-ray transmission data in this direction is avoided, exposure to the patients seems to be reduced one 20th of usual value. Some alternative method has to be found for clinically sufficient image quality. New methods are under development and tentative results are reported that utilizes the principle of superposition.
-
Matsumoto, Masao;Suekane, Kouji;Maeda, Kouji;Ogata, Yuji;Inamura, Kiyonari;Kanai, Kouzo;Kanamori, Hitoshi 385
We measured and evaluated digital, pre-sampling and overall imaging properties (characteristic curves, Modulation Transfer Function (MTF), Wiener spectra (WS), Noise Equivalent Quanta (NEQ) and Detective Quantum Efficiency (DQE)) for the direct type and indirect type of Flat-Panel Detector (FPD). First, the digital and overall characteristic curves of the both types of FPD had more wide dynamic range than that of the S/F system. Second, the pre-sampling and overall MTF of the direct-type FPD were superior to those of the indirect-type FPD. Third, for identical exposures, the digital and overall WS of the direct-type FPD were similar or worse than those of the indirect-type FPD, and for larger exposure, the digital WS of the both types of FPD were smaller, but overall WS of the both types of FPD were larger. Fourth, the digital and overall NEQ and DQE of the direct-type FPD were worse than both NEQ and DQE of the indirect-type FPD at lower spatial frequencies, but were better at higher spatial frequencies. -
Digital radiography (DR) is being developed for numerous applications in medical imaging. For understanding DR image, it is necessary to comprehend DR responses to X-ray in terms of absorbed energy. This study reports on the relationship of absorbed energy in the scintillator vs. pixel value of detector. Pixel value and exposure were measured from 50 kVp to 120 kVp until the detector was saturated. For representing radiation produced at the X-ray tube, we used program Srs-78 and compared experimental exposure with calculated exposure. Absorbed energy was acquired using spectrum and we got the relation between the two values.
-
Lee, Hyoung-Koo;Lee, Jung-Ae;Kim, Sung-Hyun;Ho, Dong-Su;Kim, Do-Il;Suh, Tae-Suk;Choe, Bo-Young;Kim, Jin-Soo;Kim, Jin-Won 393
We propose a method which can replace the DR when measuring performance evaluation parameters of antiscatter grids for DR. We used conventional x-ray films to produce grid images, which were scanned by a film digitizer. The digitizer could provide sampling interval of 87 micrometers and pixel depth of 12 bits. Grid line frequencies were measured using aliasing effect and non-uniformities of grids were measured by transforming scanned pixel values of film images into optical densities. -
Sato, Eiichi;Hayasi, Yasuomi;Tanaka, Etsuro;Mori, Hidezo;Kawai, Toshiaki;Takayama, Kazuyoshi;Ido, Hideaki 396
Intense quasi-monochromatic x-ray irradiation from the linear plasma target is described. The plasma x-ray generator employs a high-voltage power supply, a low-impedance coaxial transmission line, a high-voltage condenser with a capacity of about 200 nF, a turbo-molecular pump, a thyristor pulse generator as a trigger device, and a flash x-ray tube. The high-voltage main condenser is charged up to 55 kV by the power supply, and the electric charges in the condenser are discharged to the tube after triggering the cathode electrode. The x-ray tube is of a demountable triode that is connected to the turbo molecular pump with a pressure of approximately 1 mPa. As electron flows from the cathode electrode are roughly converged to the molybdenum target by the electric field in the tube, the weakly ionized plasma, which consists of metal ions and electrons, forms by the target evaporating. In the present work, the peak tube voltage was almost equal to the initial charging voltage of the main condenser, and the peak current was about 20 kA with a charging voltage of 55 kV. When the charging voltage was increased, the linear plasma x-ray source grew, and the characteristic x-ray intensities of K-series lines increased. The quite sharp lines such as hard x-ray lasers were clearly observed. The quasi-monochromatic radiography was performed by a new film-less computed radiography system. -
The fundamental experiments for measuring soft x-ray characteristics from the vacuum capillary are described. These experiments were primarily performed in order to generate line spectra such as x-ray lasers. The generator consists of a high-voltage power supply, a polarity-inversion ignitron pulse generator, a turbo-molecular pump, and a radiation tube with a capillary. A high-voltage condenser of 200 nF in the pulse generator is charged up to 20 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing the ignitron. During the discharge, weakly ionized plasma forms on the inner and outer sides of a capillary. In the present work, the pump evacuates air from the tube with a pressure of about 1 mPa, and a demountable capillary was developed in order to measure x-ray spectra according to changes in the capillary length. In this capillary, the anode (target) and cathode elements can be changed corresponding to the objectives. The capillary diameter is 2.0 mm, and the length is adjusted from 1 to 50 mm. When a capillary with aluminum anode and cathode electrodes was employed, both the cathode voltage and the discharge current almost displayed damped oscillations. The peak values of the voltage and current increased when the charging voltage was increased, and their maximum values were -10.8 kV and 4.7 kA, respectively. The x-ray durations observed by a 1.6
${\mu}$ m aluminum filter were less than 30${\mu}$ s, and we detected the aluminum characteristic x-ray intensity using a 6.8${\mu}$ m aluminum filter. In the spectrum measurement, two sets of aluminum and titanium electrodes were employed, and we observed multi-line spectra. The line photon energies seldom varied according to changes in the condenser charging voltage and to changes in the electrode element. In the case where the titanium electrode was employed, the line number decreased with corresponding decreases in the capillary length. Compared with incoherent visible light, these rays from the capillary were diffracted and diffused greatly after passing through two slits. -
We have investigated the contribution of the scattered x rays to the signal imaging in the radiographs acquired with anti-scatter grids of several grid ratios by separating the line spread functions (LSFs) derived from the signal edge image into the primary and the scatter components. By using a 1.0-mm lead plate in the scattering material, the blurred signal edge images were acquired by use of an imaging plate at a tube voltage of 80 kV with the anti-scatter grids of grid ratios for 5:1, 6:1, 8:1, 10:1 and 12:1. The edge profiles of the signal images were scanned and those in relative exposure were differentiated to obtain the LSFs. To investigate the contribution of the scattered x rays to the signal imaging, we proposed a method for separating the LSFs derived from the signal images into the primary and the scatter components, where the scatter component was approximated with exponential function. Our basic approach is to separate the area of the LSFs by ratios of the scattered x-ray exposure to the primary x-ray exposure, which were obtained for the grid ratios by use of a lead disk method. The LSFs and the two components were Fourier transformed to obtain the modulation transfer functions (MTFs) and their two components. As the result, we found that, by using the anti-scatter grids, the scattered x rays were reduced, but the shape of the LSFs of the scatter component hardly changed. The contributions of the scatter component to the MTFs were not negligible (more than 10 %) for spatial frequencies lower than about 1.0 mm
$\^$ -l/ and that was greater as the grid ratio decreasing. On the other hand, for higher frequencies, the primary component was dominant compared with the scatter component. -
Toyofuku, Fukai;Tokumori, Kenji;Kanda, Shigenobu;Ohki, Masafumi;Higashida, Yoshiharu;Hyodo, Kazuyuki;Ando, Masami;Uyama, Chikao 407
Monochromatic x-ray CT has several advantages over conventional CT, which utilizes bremsstrahlung white x-rays from an x-ray tube. There are several methods to produce such monochromatic x-rays. The most popular one is crystal diffraction monochromatization, which has been commonly used because of the fact that the energy spread is very narrow and the energy can be changed continuously. The alternative method is the use of fluorescent x-ray, which has several advantages such as large beam size and fast energy change. We have developed a parallel-beam and a fan-beam monochromatic x-ray CT, and compared some characteristics such as accuracy of CT numbers between those systems. The fan beam monochromatic x-rays were generated by irradiating target materials by incident white x-rays from a bending magnet beam line NE5 in 6.5 GeV Accumulation Ring at Tukuba. The parallel beam monochromatic x-rays were generated by using a silicon double crystal monochromator at the bending magnet beam line BL-20BM in Spring-8. A Cadmium telluride (CdTe) 256 channel array detector with 512mm sensitive width capable of operating at room temperature was used in the photon counting mode. A cylindrical phantom containing eight concentrations of gadolinium was used for the fan beam monochromatic x-ray CT system, while a phantom containing acetone, ethanol, acrylic and water was used for the parallel monochromatic x-ray CT system. The linear attenuation coefficients obtained from CT numbers of those monochromatic x-ray CT images were compared with theoretical values. They showed a good agreement within 3%. It was found that the quantitative measurement can be possible by using the fan beam monochromatic x-ray CT system as well as a parallel beam monochromatic X-ray CT system. -
Tokumori, Kenji;Toyofuku, Fukai;Kanda, Shigenobu;Ohki, Masafumi;Higashida, Yoshiharu;Hyodo, Kazuyuki;Ando, Masami;Uyama, Chikao 411
The CdTe semiconductor detector has a higher detection efficiency for x-rays and$\square$ amma rays and a wider energy band gap compared with Si and Ge semiconductor detectors. Therefore, the size of the detector element can be made small, and can be operated at room temperature. The interaction between a CdTe detector and incident x-rays is mainly photoelectric absorption in the photon energy range of up to 100 keV. In this energy range, Compton effects are almost negligible. We have developed a 256 channel CdTe array detector system for monochromatic x-ray CT using synchrotron radiation. The CdTe array detector system, the element size of which is 1.98 mm (h) x 1.98 mm (w) x 0.5 mm (t), was operated in photon counting mode. In order to improve the spatial resolution, we tilted the CdTe array detector against the incident parallel monochromatic x-ray beam. The experiments were performed at the BL20B2 experimental hutch in SPring-8. The energy of incident monochromatic x-rays was set at 55 keV. Phantom measurements were performed at the detector angle of 0, 30 and 45 degrees against the incident parallel monochromatic x-rays. The linear attenuation coefficients were calculated from the reconstructed CT images. By increasing the detector angle, the spatial resolutions were improved. There was no significant difference between the linear attenuation coefficients which were corrected by the detector angle. It was found that this method was useful for improving the spatial resolution in a parallel monochromatic x-ray CT system. -
Imamura, Keiko;Ehara, Norishige;Inada, Yoichi;Miyamoto, Keiko;Kanemaki, Yoshihide;Umetani, Keiji;Uesugi, Kentaro;Ochiai, Yoshinori;Fukuda, Mamoru;Nakajima, Yasuo 415
Images of microcalcification specks showed large variation in conventional radiographs of phantoms which are approved for mammography image quality standard by the American College of Radiology (ACR). This kind of variation is not appropriate for image quality standards because the number of specks are visually counted in images and that number is important in image quality evaluation. Our study using synchrotron radiation (SR) imaging revealed the overlapping of micro-sized air bubble(s) to some specks, and also the structural deformation or crackings. Eight phantoms approved by ACR from two different makers and an air-bubble phantom were examined. SR imaging was performed at a synchrotron radiation facility, SPring-8, in Japan. The image-detector was a fluorescent-screen optical-lens coupling system using a CCD camera with a spatial resolution of 6$\square$ m. Objects when imaged with longer sample-to-detector distance show edge enhancement due to a difference in refraction indices, that is refraction enhancement. Refraction-enhanced SR images revealed that some of specks carried foreign objects, which were proven to be air. In phantoms provided by one maker, attaching/overlapping airs were observed for 62 out of 150 specks (41%) , with a higher incidence for the smallest specks. A speck becomes hardly visible in a conventional radiograph when air(s) overlaps the majority part of a speck, though depending on the size of the air-inclusion and on its configuration. Those airs might have been adsorbed on a speck surface before being embedded and then introduced into the matrix together with specks. Our study using SR imaging has clearly shown the nature of defects in some mammography phantoms which seriously degrade the quality as an image standard. -
Sato, Eiichi;Komatsu, Makoto;Hayasi, Yasuomi;Tanaka, Etsuro;Mori, Hidezo;Kawai, Toshiaki;Ichimaru, Toshio;Takayama, Kazuyoshi;Ido, Hideaki 418
Fundamental study on quasi-monochromatic parallel radiography using a polycapillary plate and a plane-focus x-ray tube is described. The x-ray generator consists of a negative high-voltage power supply, a filament (hot cathode) power supply, and an x-ray tube. The negative high-voltage is applied to the cathode electrode, and the transmission type target (anode) is connected to the ground potential. The maximum voltage and current of the power supply were -100 kV (peak value) and 3.0 mA, respectively. In this experiment, the tube voltage was regulated from 20 to 25 kV, and the tube current was regulated by the filament temperature and ranged from 1.0 to 3.0 mA. The exposure time is controlled in order to obtain optimum film density, and the focal spot diameter was about 10 mm. The polycapillary plate is J5022-21 made by Hamamatsu Photonics Inc., and the outside and effective diameters are 87 and 77 mm, respectively. The thickness and the hole diameter of the polycapillary are 1.0 mm and 25${\mu}$ m, respectively. The x-rays from the tube are formed into parallel beam by the polycapillary, and the radiogram is taken using an industrial x-ray film of Fuji IX 100 without using a screen. In the measurement of image resolution, we employed three brass spacers of 2, 30, and 60 mm in height. By the test chart, the resolution fell according to increases in the spacer height without using a polycapillary. In contrast, the resolution slightly fell with corresponding increases in the height by the polycapillary. In angiography, fine blood vessels of about 100${\mu}$ m are clearly visible. -
The accuracy of DXA(Dual Energy X-ray Absorptiometry) highly depends on the detection and separation capability of dual energy X-ray X-ray photons. In addition both of scan time and patient exposure are affected by detection efficiency. A CZT detector with a good energy resolution and high detection efficiency was evaluated for the application of bone densitometry. Its performance was compared to a photomultiplier tube with a NaI(T1) scintillator in terms of energy resolution, detection efficiency and the accuracy of bone mineral density measurement. The comparison study was performed with CZT detector and PM tube using DXA equipments(OSTEO Plus, OSTEO Prima, ISOL Technology). The energy spectrum was acquired using MCA(Multi-Channel Analyzer). The used X-ray energy ranged from 20keV to 86keV. The MCA result of the CZT detector showed a slightly sharper energy spectrum than that of NaI(T1). Detection efficiency of the CZT detector at 59.5keV was 1.4 times better. Remarkably the final results of bone mineral density measurements demonstrate only less than 1% difference. The CZT detector appears to have many benefits for the application of bone densitometry. Its excellent energy resolution can enhance the counting accuracy of dual energy X-ray spectrum. Furthermore its compactness in physical dimension and no cooling requirement will be additional benefits for a more compact and accurate bone densitometer.
-
The bone densitometer is to investigate the bone mineral content and density for the osteoporosis assessment by using dual energy X-ray photons. For the clinical verification of the ISOL's OSTEO plus, the clinical study was performed with healthy and non-menopausal 30 female volunteers. The fan-beam DXA machine (Lunar, Expert) was chosen as a reference. After correlation analysis of their bone mineral densities, a strong correlation was obtained. From the results, it is claimed that the new forearm bone densitometer is clinically useful in osteoporosis diagnosis.
-
Metabolic analysis of biological tissues, the interventional radiology in MRT (Magnetic Resonance Treatment) and for clinical diagnoses, representation of 4-Dimensional (4D) structural information (x,y,z,t) of biological tissues is required. This paper discusses image representation techniques for those 4D MR Images. We have proposed an image reconstruction method for ultra-fast 3D MRI. It is based on image interpolation and prediction of un-acquired pictorial data in both of the real and the k-space (the acquisition domain in MRI). A 4D MR image is reconstructed from only two 3D MR images and acquired a few echo signals that are optimized by prediction of the tissue motion. This prediction can be done by the phase of acquired echo signal is proportioned to the tissue motion. On the other hand, reconstructed 4D MR images are represented as a 3D-movie by using computer graphics techniques. Rendered tissue surfaces and/or ROIs are displayed on a CRT monitor. It is represented in an arbitrary plane and/or rendered surface with their motion. As examples of the proposed representation techniques, the finger and the lung motion of healthy volunteers are demonstrated.
-
Tomida, Tetsuya;Nishimura, Katsuyuki;Abe, Shinji;Sato, Hitoshi;Muraishi, Hiroshi;Inada, Tetsuo;Tazawa, Shuichi;Kanai, Tatsuaki;Yusa, Ken;Kawachi, Kiyomitsu 432
We have developed and proposed the heavy ion CT system which consists of fluorescent screen and CCD camera equipped with image intensifier. In our system, we have measured the residual range of particles that passed a phantom and reconstructed the CT image for the distribution of relative stopping power by filtered back projection method with Shepp '||'&'||' Logan filter. The heavy ion$\^$ 12/C accelerated up to 400 MeV/u by HIMAC (Heavy Ion Medical Accelerator in Chiba) was used. Intensity of the beam output changes like macro pulse, the period being 3.3 sec and the width being 2 sec. The series of data was acquired in synchronizing with the pulse, leading to the improvement of S/N in the CT image. The fundamental performance was experimentally evaluated in the proposed system. The spatial resolution was estimated to be about 1 mm and the density resolution (electron density referred to water) to be about 0.01. -
As the use of virtual simulation expands, digitally reconstructed radiographs (DRRs), which mimic conventional simulation films, play an increasingly important role as reference images in the verification of treatment fields. The purpose of our study is to develop an algorithm for computation of digitally reconstructed radiographs based on Monte Carlo simulation that take into account almost all possible physical processes by which photons interact with matter. The Monte Carlo simulation based DRRs have the following features. 1) Account has been taken of almost all possible physical processes of interaction of photons with matter, including a detector (film) response. In principle, this is equivalent to X-ray radiography. 2) Arbitrary photon energies (from diagnostic to therapeutic) can be used to produce DRRs. One can even use electrons as the source. 3) It is easy to produce a double exposure, which mimics the double exposure portal image and may have superior visual appeal for treatment field verification, with weighting within the treatment field.
-
The aim of this study is to reconstruct the 3D target volume from multiple projection images. It was assumed that we were already aware of the target position exactly, and all processes were performed in Target Coordinates whose origin was the center of the target. We used six projections: two projections were used to make a Reconstruction Box and four projections were for image acquisition. Reconstruction Box was made up of voxels of 3D matrix. Projection images were transformed into 3D volume in this virtual box using geometrical based back-projection method. Algorithm was applied to an ellipsoid model and horse-shoe shaped model. Projection images were created using C program language by geometrical method and reconstruction was also accomplished using C program language and Matlab(The Mathwork Inc., USA). For ellipsoid model, reconstructed volume was slightly overestimated but target shape and position was proved to be correct. For horse-shoe shaped model, reconstructed volume was somewhat different from original target model but there was a considerable improvement in target volume determination.
-
We present an algorithm for automatic anatomically adaptive image enhancement of digital chest radiographs. Chest images were exposed using digital radiography system with a 0.143 mm pixel pitch, l4-bit gray levels, and 3121
${\times}$ 3121 matrix size. A chest radiograph was automatically divided into two classes (lung field and mediastinum) by using a maximum likelihood method. Each pixel in an image was processed using fuzzy domain transformation and enhancement of both the dynamic range and local gray level variations. The lung fields were enhanced appropriately to visualize effectively vascular tissue, the bronchus, and lung tissue, etc as well as pneumothorax and other lung diseases at the same time with the desired mediastinum enhancement. A prototype implementation of the algorithm is undergoing trials in the clinical routine of radiology department of major Korean hospital. -
Lee, Dong-Hoon;Ji, Young-Hoon;Lee, Dong-Han;Kim, Yoon-Jong;Chilgoo Byun;Hong, Seung-Hong;Rhee, Soo-Yong 446
The video based electronic portal imaging device (EPID), which could display the portal image in near real time, was implemented to verify treatment position error in FSRT(Fractionated Stereotatic Radiation Therapy) instead of a portal film. Also, Developed FSRT system was composed of the stereotactic frame, frame mounting system and collimator cones. The verification of treatment position is very crucial in special therapies like FSRT. In general, the FSRT uses high dpse rate at small field size for treating small intracranial lesions. To evaluate quantitative positioning errors in FSRT, we used the first FSRT image as reference image and obtained the second FSRT image that was moved 2mm intentionally and detected intracranial contours after image processing. The generated 2mm error could be verified by overlapping only contours of two images. Through this study, the radiation treatment efficiency could be improved by performing precise radiation therapy with a developed video based EPID and FSRT. -
In radiotherapy treatment planning, it is critical to deliver the radiation dose to tumor and protect surrounding normal tissue. Recent developments in functional imaging and radiotherapy treatment technology have been raising chances to control tumor saving normal tissues. A brain phantom which could be used for image registration technique of CT-MR and CT-SPECT images using surface matching was developed. The brain phantom was specially designed to obtain imaging dataset of CT, MR, and SPECT. The phantom had an external frame with 4 N-shaped pipes filled with acryl rods, Pb rods for CT, MR, and SPECT imaging, respectively. 8 acrylic pipes were inserted into the empty space of the brain phantom to be imaged for geometric evaluation of the matching. For an optimization algorithm of image registration, we used Downhill simplex algorithm suggested as a fast surface matching algorithm. Accuracy of image fusion was assessed by the comparison between the center points of the section of N-shaped bars in the external frame and the inserted pipes of the phantom and minimized cost functions of the optimization algorithm. Technique with partially transparent, mixed images using color on gray was used for visual assessment of the image registration process. The errors of image registration of CT-MR and CT-SPECT were within 2mm and 4mm, respectively. Since these errors were considered within a reasonable margin from the phantom study, the phantom is expected to be used for conventional image registration between multimodal image datasets..
-
Higashida, Yoshiharu;Ideguchi, Tadamitsu;Muranaka, Toru;Akazawa, Fumio;Miyajima, Ryuichi;Tabata, Nobuyuki;Ikeda, Hirotaka;Ohki, Masafumi;Toyofuku, Fukai;Doi, Kunio 454
The evaluation of interval changes between temporally sequential chest radiographs is necessary for the detection of new abnormalities or interval changes, such as pulmonary nodules and interstitial disease. For interstitial lung disease, the interval changes are very important for diagnosis and treatment. Especially, interstitial lung disease may show rapid changes in the radiographs, show changes in the entire lung field in minute detail, or show changes in multiple parts depending on the type. It is therefore difficult to have an accurate grasp of the condition of the disease only with conventional radiographs. The temporal subtraction technique which was developed at the University of Chicago, provides a subtraction image of the current warped image and the previous image. A temporal subtraction image, shows only differences and changes between the two images, can be very useful for a diagnosis of interstitial lung disease. However, the evaluation of the temporal subtraction technique for interstitial lung disease using receiver operating characteristic(ROC) studies has not been reported yet. Therefore, we have evaluated the clinical usefulness of a temporal subtraction technique for detection of interval changes of interstitial lung disease by ROC analysis. -
Haijo Jung;Kim, Hee-Joung;Lee, Sang-Ho;Kim, Dong-Wook;Soonil Hong;Kim, Dong-Hyeon;Son, Hye-Kyung;Wonsuk Kang;Kim, Kee-Deog 457
The image quality of three-dimensional (3D) images has been widely investigated by the qualitative analysis method. A need remains for an objective and quantitative method to assess the image quality of 3D volume-rendered images. The purpose of this study was to evaluate the quantitative accuracy of distance measurements on 3D volume-rendered images of a dry human skull by using multi-detector computed tomography (MDCT). A radiologist measured five times the twenty-one direct measurement line items composed among twelve reference points on the skull surface with a digital vernier caliper. The water filled skull specimen was scanned with a MDCT according to the section thicknesses of 1.25, 2.50, 3.75, and 5.00 mm for helical (high quality; pitch 3:1) scan mode. MDCT data were reconstructed with its acquisition section thickness and with 1.25 mm section thickness for all scans. An observer also measured seven times the corresponding items on 3D volume-rendered images with measuring tools provided by volumetric analysis software. The quantitative accuracy of distance measurements on the 3D volume-rendered images was statistically evaluated (p-value < 0.05) by comparatively analyzing these measurements with the direct distance measurements. The accuracy of distance measurements on the 3D volume-rendered MDCT images acquired with 1.25, 2.50, 3,75 and 5.00 mm section thickness and reconstructed with its section thickness were 48%, 33%, 23%, and 14%, respectively. Meanwhile, there were insignificant statistical differences in accuracy of distance measurements among 3D volume-rendered images reconstructed with 1.25 mm section thickness for the each acquisition section thickness. MDCT images acquired with thick section thickness and reconstructed with thin section thickness in helical scan mode should be effectively used in medical planning of 3D volume-rendered images. The quantitative analysis of distance measurement may be a useful tool for evaluating the quantitative accuracy and the defining optimal parameters of 3D volume-rendered CT images. -
Lee, Sang-Ho;Park, Byoung-Wook;Kim, Hee-Joung;Haijo Jung;Kang, Won-suk;Son, Hye-Kyung;Choe, Kyu-Ok 461
Image quality and selection of optimized window for good quality reconstruction in coronary angiography using multi-detector row CT (MDCT) have not been studied by heart rate and its variation. Therefore, the effect of heart rate and its variation was systemically analyzed. Eighty-three patients were undergone contrast-enhanced coronary angiography using MDCT. In this study, sixty cases were enrolled. Two radiologists graded image quality as follows: 4, excellent; 3, good; 2, fair; l, bad. The starting points of the reconstruction window were chosen at seventy and forty percent of R wave interval. Optimized window was scored as 1 when 40% reconstruction was better quality than 70%, as 2 when 40% reconstruction is same as 70%, and as 3 when 70% reconstruction was better than 40%. Regression analysis was performed. The range of variation of beats per minute (BPM) was well correlated with image quality (r=-0.55, p=0.000), however correlation with optimized window percentage was not statistically significant (p=0.969). By contraries, median value of BPM was comparatively well correlated with optimized window grade (r=-0.24, p=0.086). Median value of BPM was not well correlated with image quality (r=0.l70, p=0.l97). Image quality is more affected by variation of heart rate (VHR) than by higher heart rate. Selection of optimized reconstruction window for good image quality is mainly affected by heart rate and there is a tendency that systolic phase reconstruction is better in image quality than diastolic reconstruction in higher heart rate. -
Kodama, Kiyoyuki;Hashimoto, Masatoshi;Hanada, Takashi;Suzuki, Tamotsu;Ide, Tatsuya;Maruyama, Koichi 464
We propose the use of visible scintillation light for monitoring the X-ray CT in the gantry of a diagnostic CT for its performance test and maintenance works. We placed a disk of bare plastic scintillator disk in the gantry opening area of a helical X-ray CT. When we operated the CT, we could observe the emission of blue scintillation light from the scintillator in a dark room. Visible light was identified under all scanning conditions of diagnostic uses. As a result, we observed the direction and the spread of the incident X-ray in the scintillator. We also observed the change of the part of the scintillator where visible light was generated, and the move that took place associating with the rotation of the X-ray tube during one CT scan. On the basis of the observation, we examined the usefulness of the visible scintillation light as a convenient performance-evaluating tool as well as a maintenance tool of the CT. -
We have designed X-ray detection system and multi-channel data acquisition system for Spiral CT application. X-ray detection system consists of scintillator and photodiode. Scintillator converts X-ray into visible light. Photodiode converts visible light into electrical signal. The multi-channel data acquisition system consists of analog, digital, master and backplane board. Analog board detects electrical signal and amplifies signal by 140dB. Digital board consists of MUX(Multiplex) which routes multi-channel analog signal to preamplifier, and ADC(Analog to Digital Converter) which converts analog signal into digital signal. Master board supplies the synchronized clock and transmits the digital data to image reconstructor. Backplane provides electrical power, analog output and clock signal. The system converts the projected X-ray signal over the detector array with large gain, samples the data in each channel sequentially, and the sampled data are transmitted to host computer in a given time frame. To meet the timing limitation, this system is very flexible since it is implemented by FPGA(Field Programmable Gate Array). This system must have a high-speed operation with low noise and high SNR(signal to noise ratio), wide dynamic range to get a high resolution image.
-
Public concerns associated with the electromagnetic field (EMF) exposures from mobile phones on human body are increased. Although studies on the effects of the EMF exposures on human have been carried out for a long time, it is not proved yet whether the EMF effect is harmful or not. Based on the scientific results by experts, EMF exposure limits have been regulated as a precautionary approach on the assumption that the EMF effect may be harmful. It is well known that absorbed EMF can be transformed into heat within biological tissues and that thermal effects are related with the specific absorption rate (SAR) distribution. However, the relative magnitude and distribution of the energies are not well defined. Although there is comprehensive information of the thermal effects, most of them come from animal and in vitro studies. Considerable efforts have been made to analyze the EMF absorption model while the actual temperature in the human body has been rarely measured. Temperature changes on the face of a healthy male volunteer were studied. A digital mobile phone of 1.8GHz was used. A digital infrared imaging system (IRIS-5000, Medicore, Seoul, Korea) was applied to take infrared pictures of the face every minute while the volunteer talked over the mobile phone for 20 minutes. The specification of the imaging system was as follows: Temperature resolution = 0.1
$^{\circ}C$ ; Range of temperature measurement = 17~40$^{\circ}C$ ; Pixel size = 0.9mm${\times}$ 0.9mm; Frame time = 2.6s; Active temperature of detector = 77$^{\circ}$ K. The result showed that temperature of the ear region was increased during the phone call and the region of the temperature increase on the face was expanded as the phone call time increased. Further study is necessary to investigate the temperature rise analytically and quantitatively. -
Equipment to cauterize tumors by an electrically heated Kanthal wire is under development. The wire( alloy of iron, chromium and Aluminum) keeps sufficient strength up to 1400 degrees in Celsius. Although AC 50Hz current source is used in the prototype experiment, RF current will be used in future. The diameter of the Kanthal wire was 0.3 mm which was connected to Kanthal wire of 0.8 mm. The thicker wire was used as a leading wire. The possibility of application of the heating wire in combination with an ultrasound endoscope was determined, where ultrasound endoscope is to be used to monitor the location on the wire and an extent of a tumor in digestive organs. This procedure requires the wire to be applied inside ultrasound transmitting media. First, the wire was applied in the degassed water in which a chicken liver sample was submerged. The wire, however, burned out in water soon after it became red-hot at 12 A. The reason is that large current is required for the wire to become red-hot due to strong convection. Starch paste of 3 weight percent was employed instead of water. This made the wire red-hot approximately at 6 A, showing the increased viscosity of the starch decreased the convection and the wire was cover by the steam. The liver sample was cauterized successively, while the location of the wire and the liver was monitored by an ultrasound diagnosis equipment outside the plastic vessel of the starch paste.
-
Heating by RF wave is divided into dielectric heating and induction heating. Dielectric heating and induction heating from outside the body have the compensatory heating pattern. While surface fat layer is heated by dielectric heating, it is not heated by induction heating. While the peripheral part at the middle of the electrodes is not heated by dielectric heating, it is heated by induction heating. By the simultaneous application both modalities, heating pattern seems to be more uniform and improved. Computer simulation of Finite Element Method (FEM) using ANSYS was conducted to dielectric heating with the results of above-mentioned feature. Theoretical considerations by the uniform RF magnetic field in a cylinder and textbooks support the feature of the above-mentioned heating pattern of induction heating. Further computer simulation of FEM using ANSYS will be conducted to simultaneous application of dielectric heating and induction heating to verify and will be reported.
-
In every cancer early detection and early treatment is the best way to decrease mortality of patients. Moreover early detection of breast cancer increases the possibility of breast conservation treatment. Although mammography is the most powerful modality for early detection, it is hazardous to be used for young women due to X-ray exposure. Another modality of image diagnosis is ultrasound echo technique. But it is not so powerful to detect breast cancer compared to mammography. Palpation is another modality, but is largely dependent on the skill and experience of medical doctors. A new technique is tested its validity in phantom experiments with good results.
-
In order to understand and quantitatively analyze the physical phenomena and behavior of each component of mammography system during the breast imaging, we simulated mammography imaging using Monte Carlo simulation codes. MCNP4B code was used for our simulation purpose, and we investigated the effect of target material, anode angle, filtration, peak voltage and exposure on the image quality of mammograms. From the simulation results we expect that optimized operation condition of mammography system can be found.
-
Lee, Jae-Hoon;Sung, Min-Mo;Kim, Hee-Joung;Yoo, Sun-Kwook;Kim, Eun-Kyung;Kim, Dong-Keun;Jung, Suk-Myung;Yoo, Hyung-Sik 489
The need for video diagnosis in medicine has been increased and real-time transfer of digital video will be an important component in PACS and telemedicine. But, Network environment has certain limitations that the required throughput can not satisfy quality of service (QoS). MPEG-4 ratified as a moving video standard by the ISO/IEC provides very efficient video coding covering the various ranges of low bit-rate in network environment. We implemented MPEG-4 CODEC (coder/decoder) and applied various compression ratios to moving ultrasound images. These images were displayed in random order on a client monitor passed through network. Radiologists determined subjective opinion scores for evaluating clinically acceptable image quality and then these were statistically processed in the t-Test method. Moreover the MPEG-4 decoded images were quantitatively analyzed by computing peak signal-to-noise ratio (PSNR) to objectively evaluate image quality. The bit-rate to maintain clinically acceptable image quality was up to 0.8Mbps. We successfully implemented the adaptive throughput or bit-rate relative to the image quality of ultrasound sequences used MPEG-4 that can be applied for diagnostic performance in real-time. -
Numasaki, Hodaka;Harauchi, Hajime;Okura, Yasuhiko;Ishii, Atsue;Kasahara, Satoko;Monden, Morito;Sakon, Masato;Bando, Masako;Ohno, Yuko;Inamura, Kiyonari 492
We established the job classification method that a classification standard is clear, and can subdivide job by using the raw data of time-and-motion study performed to analyze the medical staffs job elements. The final target of this study is to optimize job allocation and calculate human cost of medical staffs in hospitals. -
The objectives of the International Organization for Medical Physics (IOMP) are to organize international cooperation in medical physics, to contribute to the advancement of medical physics in all its aspects, especially in developing countries; and to encourage and advise on the formation of national organizations of medical physics in those countries that lack such organizations. The objectives of the Asian-Oceania Federation of Medical Physics (AFOMP) are to advance medical physics in our geographic region, especially in those countries that do not yet have national organizations of medical physics. We must focus on the development of AFOMP in science, professional relations, education and training in our geographic areas and to seek funding and support from the IOMP for these activities. Since its formation in 2000, the Asian-Oceania Federation of Medical Physics (AFOMP) has been participating actively in IOMP. Our goal now should be to gain more influence by placing members on various committees of IOMP as well as preparing members for leadership roles at the upper levels. AFOMP is already on the world map of medical physics with the upcoming two world congresses - Sydney and Seoul.
-
The specific radioactivity concentrations of
$\^$ 238/U,$\^$ 232/Th,$\^$ 40/K were measured in soil samples around Zuunmod town of Mongolia using HP-Ge gamma-spectrometer. Also the specific radioactivity concentrations of above elements were measured in coal and ash samples which were collected from the Central steam heating in Zuunmod town. It was determined the effective equivalent dose. -
Kim, Dong-Wook;Kim, Hee-Joung;Haijo Jung;Soonil Hong;Yoo, Young-Il;Kim, Dong-Hyeon;Kim, Kee-Deog 506
As an advancement of medical imaging modalities and analyzing software with multi-function, active researches to acquire high contrast and high resolution image being done. In recently, development of medical imaging modalities like as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) is aiming to display anatomical structure more accuracy and faster. Thus, one of the important areas in CT today is the use of CT scanner for the quantitative evaluation of 3-D reconstruction images from 2-D tomographic images. In CT system, the effective slice thickness and the quality of 3-D reconstructed image will be influenced by imaging acquisition parameters (e.g. pitch and scan mode). In diagnosis and surgical planning, the accurate distance measurements of 3-D anatomical structures play an important role and the accuracy of distance measurements will depend on the acquisition parameters such as slice thickness, pitch, and scan mode. The skull phantom was scanned with SDCT for various acquisition parameters and acquisition slice thicknesses were 3 and 5 mm, and reconstruction intervals were 1, 2, and 3 mm to each pitch. 3-D visualizations and distance measurements were performed with PC based 3-D rendering and analyzing software. Results showed that the image quality and the measurement accuracy of 3-D SDCT images are independent to the reconstruction intervals and pitches.