We classify rotation sampling designs into two classes. The first class replaces sample units within the same rotation group while the second class replaces sample units between different rotation groups. The first class is specified by the three-way balanced design which is a multi-level version of previous balanced designs. We introduce an extended generalized composite estimator (EGCE) and derive its variance and mean squared error for each of the two classes of design, cooperating two types of correlations and three types of biases. Unbiased estimators are derived for difference between interview time biases, between recall time biases, and between rotation group biases. Using the variance and mean squared error, since any rotation design belongs to one of the two classes and the EGCE is a most general estimator for rotation design, we evaluate the efficiency of EGCE to simple weighted estimator and the effects of levels, design gaps, and rotation patterns on variance and mean squared error.