Many studies involving a thermal stress analysis using computational methods have been conducted, though there have been relatively few experimental attempts to investigate thermal stress phenomena. Casting products undergo thermal stress variations during the casting process as the temperature drops from the melting temperature to room temperature, with gradient cooling also occurring from the surface to the core. It is difficult to examine thermal stress states continuously during the casting process. Therefore, only the final states of thermal stress and deformations can be detemined. In this study, specimens sensitive to thermal stress, were made by a casting process. After which the residual stress levels in the specimens were measured by a hole drilling method with Electron Speckle-Interferometry technique. Subsequently, we examined the thermal stresses in terms of deformation during the casting process by means of a numerical analysis. Finally, we compared the experimental and numerical analysis results. It was found that the numerical thermal stress analysis is an effective means of understanding the stress generation mechanism in casting products during the casting process.