In order to assess the possibility whether CYP2D is involved in caffeine metabolism, we have purified and characterized the rat liver microsomal cytochrome P4502D1 (CYP2D1), equivalent to CYP2D6 in human liver, and have utilized the reconstituted CYP2D1 in the metabolism of 4 primary caffeine (1, 3, 7-trimethylxanthine) metabolites such as paraxanthine (1, 7-dimethylxanthine), 1, 3, 7-trimethylurate, theophylline (1, 3-dimethylxanthine) and theobromine (3, 7-dimethylxanthine). Rat liver CYP 2D1 has been purified to a specific content of 8.98 nmole/mg protein (13.4fold purification, 1.5% yield) using $\omega$-aminooctylagarose, hydroxlapatite, and DE52 columns in a sequential manner. As judged from sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), the purified CYP2D1 was apparently homogeneous. Molecular weight of the purified CYP2D1 was found to be 51, 000 Da. Catalytic activity of the purified and then reconstituted CYP2D1 was confirmed by using bufuralol, a known subsFate of CYP2D1. The reconstituted CYP2D1 was found to produce to 1-hydroxylbufuralol at a rate of 1.43$\pm$0.13 nmol/min/nmol P450. The kinetic analysis of bufuralol hydroxylation indicated that Km and Vmax values were 7.32$\mu M$ and 1.64 nmol/min/nmol P450, respectively. The reconstituted CYP2D1 could catalyze the 7-demethylation of PX to 1-methylxanthine at a rate of 12.5 pmol/min/pmol, and also the 7- and 3- demethylations of 1, 3, 7-trimethylurate to 1, 3-dimethylurate and 1, 7-dimethylurate at 6.5 and 12.8 pmol/min/pmol CYP2D1, respectively. The reconstituted CYP2D1 could also 3-demethylate theophylline to 1-methylxanthine at 5 pmol/min/pmol and hydroxylate the theophylline to 1, 3-dimethylurate at 21.8 pmol/min/pmol CYP2D1. The reconstituted CYP2D1, however, did not metabolize TB at all (detection limits were 0.03 pmol/min/pmol). This study indicated that CYP2D1 is involved in 3-and 7-demethylations of paraxanthine and theophylline and suggested that CYP2D6 (equivalent to CYP2D1 in rat liver) present in human liver may be involved in the secondary metabolism of the primary metabolites of caffeine.