The major goal of this research is to develop an optimal route search algorithm for an intelligent route guidance system, one sub-area of ITS. ITS stands for intelligent Transportation System. ITS offers a fundamental solution to various issues concerning transportation and it will eventually help comfortable and swift moves of drivers by receiving and transmitting information on humans, roads and automobiles. Genetic algorithm, and fuzzy logic are utilized in order to implement the proposed algorithm. Using genetic algorithm, the proposed algorithm searches shortest routes in terms of travel time in consideration of stochastic traffic volume, diverse turn constraints, etc. Then using fuzzy logic, it selects driver-preference optimal route among the candidate routes searched by GA, taking into account various driver's preferences such as difficulty degree of driving and surrounding scenery of road, etc. In order to evaluate this algorithm, a virtual road-traffic network DB with various road attributes is simulated, where the suggested algorithm promptly produces the best route for a driver with reference to his or her preferences.