Genetic Algorithm(GA) has been known as a method of solving large-scaled optimization problems with complex constraints in various applications. Since a major drawback of the GA is that it needs a long computation time, the hardware implementations of Genetic Algorithm Processors(GAP) are focused on in recent studies. In this paper, a hardware-oriented GA was proposed in order to save the hardware resources and to reduce the execution time of GAP. Based on steady-state model among continuos generation model, the proposed GA used modified tournament selection, as well as special survival condition, with replaced whenever the offspring's fitness is better than worse-fit parent's. The proposed algorithm shows more than 30% in convergence speed over the conventional algorithm in simulation. Finally, by employing the efficient pipeline parallelization and handshaking protocol in proposed GAP, above 30% of the computation speed-up can be achieved over survival-based GA which runs one million crossovers per second (1㎒), when device speed and size of application are taken into account on prototype. It would be used for high speed processing such of central processor of evolvable hardware, robot control and many optimization problems.