References
- L. Adriano and C. Xia, Hardy type inequalities on complete Riemannian manifolds, Monatsh. Math. 163 (2011), no. 2, 115-129.
- A. Alvino, V. Ferone, P.-L. Lions, and G. Trombetti, Convex symmetrization and applications, Ann. Inst. H. Poincare Anal. Non Lineaire 14 (1997), no. 2, 275-293.
- T. Aubin, Problemes isoperimetriques et espaces de Sobolev, J. Differential Geometry 11 (1976), no. 4, 573-598.
- T. Aubin, Nonlinear Analysis on Manifolds, Monge-Ampere Equations, Grundlehren der Mathematischen Wissenschaften, 252, Springer-Verlag, New York, 1982.
- T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.
- D. Bakry and M. Emery, Hypercontractivite de semi-groupes de diffusion, C. R. Acad. Sci. Paris Ser. I Math. 299 (1984), no. 15, 775-778.
- D. Bakry and M. Emery, Diffusions hypercontractives, in Seminaire de probabilites, XIX, 1983/84, 177-206, Lecture Notes in Math., 1123, Springer, Berlin, 1985.
- D. Bao, S.-S. Chern, and Z. Shen, An introduction to Riemann-Finsler Geometry, Graduate Texts in Mathematics, 200, Springer-Verlag, New York, 2000.
- L. Caffarelli, R. Kohn, and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math. 53 (1984), no. 3, 259-275.
- F. Catrina and Z.-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions, Comm. Pure Appl. Math. 54 (2001), no. 2, 229-258. https://doi.org/10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I
- K. S. Chou and C. W. Chu, On the best constant for a weighted Sobolev-Hardy inequality, J. London Math. Soc. (2) 48 (1993), no. 1, 137-151. https://doi.org/10.1112/jlms/s2-48.1.137
- M. do Carmo and C. Xia, Ricci curvature and the topology of open manifolds, Math. Ann. 316 (2000), no. 2, 391-400. https://doi.org/10.1007/s002080050018
- M. do Carmo and C. Xia, Complete manifolds with non-negative Ricci curvature and the Caffarelli-Kohn-Nirenberg inequalities, Compos. Math. 140 (2004), no. 3, 818-826. https://doi.org/10.1112/S0010437X03000745
- F. Du, J. Mao, Q.-L. Wang, and C.-X. Wu, The Gagliardo-Nirenberg inequality on metric measure spaces, available online at arXiv:1511.04696.
- P. Freitas, J. Mao, and I. Salavessa, Spherical symmetrization and the flrst eigenvalue of geodesic disks on manifolds, Calc. Var. Partial Differential Equations 51 (2014), no. 3-4, 701-724. https://doi.org/10.1007/s00526-013-0692-7
- A. Gray, Tubes, Addison-Wesley Publishing Company, Advanced Book Program, Red-wood City, CA, 1990.
- J. Heinonen, Lectures on Analysis on Metric Spaces, Universitext, Springer-Verlag, New York, 2001.
- N. N. Katz and K. Kondo, Generalized space forms, Trans. Amer. Math. Soc. 354 (2002), no. 6, 2279-2284. https://doi.org/10.1090/S0002-9947-02-02966-5
- A. Kristaly, Metric measure spaces supporting Gagliardo-Nirenberg inequalities: volume non-collapsing and rigidities, Calc. Var. Partial Differential Equations 55 (2016), no. 5, Art. 112, 27 pp.
- A. Kristaly and S. Ohta, Caffarelli-Kohn-Nirenberg inequality on metric measure spaces with applications, Math. Ann. 357 (2013), no. 2, 711-726. https://doi.org/10.1007/s00208-013-0918-1
- M. Ledoux, On manifolds with non-negative Ricci curvature and Sobolev inequalities, Comm. Anal. Geom. 7 (1999), no. 2, 347-353.
- E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2) 118 (1983), no. 2, 349-374.
- F. Madani, Le probleme de Yamabe avec singularites, Bull. Sci. Math. 132 (2008), no. 7, 575-591. https://doi.org/10.1016/j.bulsci.2007.09.004
- V. G. Maz'ja, Sobolev Spaces, translated from the Russian by T. O. Shaposhnikova, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985.
- J. Mao, Eigenvalue inequalities for the p-Laplacian on a Riemannian manifold and estimates for the heat kernel, J. Math. Pures Appl. (9) 101 (2014), no. 3, 372-393. https://doi.org/10.1016/j.matpur.2013.06.006
- J. Mao, The Caffarelli-Kohn-Nirenberg inequalities and manifolds with nonnegative weighted Ricci curvature, J. Math. Anal. Appl. 428 (2015), no. 2, 866-881. https://doi.org/10.1016/j.jmaa.2015.03.054
- J. Mao, The Gagliardo-Nirenberg inequalities and manifolds with non-negative weighted Ricci curvature, Kyushu J. Math. 70 (2016), no. 1, 29-46.
- J. Mao, Volume comparison theorems for manifolds with radial curvature bounded, Czechoslovak Math. J. 66(141) (2016), no. 1, 71-86.
- J. Mao, Functional inequalities and manifolds with nonnegative weighted Ricci curvature, submitted.
- S. Ohta, Finsler interpolation inequalities, Calc. Var. Partial Differential Equations 36 (2009), no. 2, 211-249. https://doi.org/10.1007/s00526-009-0227-4
- P. Petersen, Comparison geometry problem list, in Riemannian geometry (Waterloo, ON, 1993), 87-115, Fields Inst. Monogr., 4, Amer. Math. Soc., Providence, RI, 1996.
- Z. Shen, Volume comparison and its applications in Riemann-Finsler geometry, Adv. Math. 128 (1997), no. 2, 306-328. https://doi.org/10.1006/aima.1997.1630
- J. Van Schaftingen, Anisotropic symmetrization, Ann. Inst. H. Poincare Anal. Non Lineaire 23 (2006), no. 4, 539-565.
- G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353-372. https://doi.org/10.1007/BF02418013
- G. Wei and W. Wylie, Comparison geometry for the Bakry-Emery Ricci tensor, J. Differential Geom. 83 (2009), no. 2, 377-405.
- C. Xia, Complete manifolds with nonnegative Ricci curvature and almost best Sobolev constant, Illinois J. Math. 45 (2001), no. 4, 1253-1259. https://doi.org/10.1215/ijm/1258138064