References
- E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal. 164 (2002), no. 3, 213-259. https://doi.org/10.1007/s00205-002-0208-7
- R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
- S. N. Antontsev and J. F. Rodrigues, On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara Sez. VII Sci. Mat. 52 (2006), no. 1, 19-36.
- S. N. Antontsev and S. I. Shmarev, A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions, Nonlinear Anal. 60 (2005), no. 3, 515-545. https://doi.org/10.1016/j.na.2004.09.026
- S. N. Antontsev and S. I. Shmarev, On the localization of solutions of elliptic equations with nonhomogeneous anisotropic degeneration, Siberian Math. J. 46 (2005), no. 5, 765-782; translated from Sibirsk. Mat. Zh. 46 (2005), no. 5, 963-984. https://doi.org/10.1007/s11202-005-0076-0
- S. N. Antontsev and S. I. Shmarev, Elliptic equations and systems with nonstandard growth conditions: existence, uniqueness and localization properties of solutions, Nonlinear Anal. 65 (2006), no. 4, 728-761. https://doi.org/10.1016/j.na.2005.09.035
- Y. Chen, S. Levine, and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), no. 4, 1383-1406. https://doi.org/10.1137/050624522
- L. Diening, Theoretical and numerical results for electrorheological fluids. Ph.D. Thesis, 2002.
- L. Diening, P. Harjulehto, P. Hasto, and M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, 2017, Springer, Heidelberg, 2011.
-
X. Fan, J. Shen, and D. Zhao, Sobolev embedding theorems for spaces
$W^{k,p(x)}(\Omega)$ , J. Math. Anal. Appl. 262 (2001), no. 2, 749-760. https://doi.org/10.1006/jmaa.2001.7618 -
X. Fan and D. Zhao, On the spaces
$L^{p(x)}(\Omega)$ and$W^{m,p(x)}(\Omega)$ , J. Math. Anal. Appl. 263 (2001), no. 2, 424-446. https://doi.org/10.1006/jmaa.2000.7617 -
O. Kovacik and J. Rakosnik, On spaces
$L^{p(x)}$ and$W^{k,p(x)}$ , Czechoslovak Math. J. 41 (1991), 592-618. - J.-L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires, Dunod, 1969.
- G. de Marsily, Quantitative Hydrogeology. Groundwater Hydrology for Engineers. Academic Press, London, 1986.
- J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, 1034, Springer-Verlag, Berlin, 1983.
- I. P. Natanson, Theory of Functions of a Real Variable, Moscow-Leningrad, 1950.
- V. Radulescu and D. Repovs, Partial differential equations with variable exponents, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2015.
- K. Rajagopal and M. Ruzicka, Mathematical modeling of electro-rheological fluids, Contin. Mech. Thermodyn. 13 (2001), 59-78. https://doi.org/10.1007/s001610100034
- M. Ruzicka, Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Mathematics, 1748, Springer-Verlag, Berlin, 2000.
- U. Sert and K. Soltanov, On solvability of a class of nonlinear elliptic type equation with variable exponent, J. Appl. Anal. Comput. 7 (2017), no. 3, 1139-1160.
- K. N. Soltanov, Solvability of nonlinear equations with operators in the form of the sum of a pseudomonotone and a weakly compact operator, Russian Acad. Sci. Dokl. Math. 45 (1992), no. 3, 676-681 (1993); translated from Dokl. Akad. Nauk 324 (1992), no. 5, 944-948.
- K. N. Soltanov, Some imbedding theorems and nonlinear differential equations, Trans. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 19 (1999), no. 5, Math. Mech., 125-146 (2000).
- K. N. Soltanov, Some nonlinear equations of the nonstable flltration type and embedding theo-rems, Nonlinear Anal. 65 (2006), no. 11, 2103-2134. https://doi.org/10.1016/j.na.2005.11.053
- K. N. Soltanov and J. Sprekels, Nonlinear equations in non-reflexive Banach spaces and strongly nonlinear differential equations, Adv. Math. Sci. Appl. 9 (1999), no. 2, 939-972.
- E. Zeidler, Nonlinear functional analysis and its applications. II/B, translated from the German by the author and Leo F. Boron, Springer-Verlag, New York, 1990.
- V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv. 29 (1987), 33-36. https://doi.org/10.1070/IM1987v029n01ABEH000958
- V. V. Zhikov, On some variational problems, Russian J. Math. Phys. 5 (1997), no. 1, 105-116 (1998).
- V. V. Zhikov, On the technique for passing to the limit in nonlinear elliptic equations, Funct. Anal. Appl. 43 (2009), no. 2, 96-112; translated from Funktsional. Anal. i Prilozhen. 43 (2009), no. 2, 19-38.