References
- N. Aktan, M. Yildirim, and C. Murathan, Almost f-cosymplectic manifolds, Mediterr. J. Math. 11 (2014), no. 2, 775-787. https://doi.org/10.1007/s00009-013-0329-2
- D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, second edition, Progress in Mathematics, 203, Birkhauser Boston, Inc., Boston, MA, 2010.
- D. E. Blair and J. A. Oubina, Conformal and related changes of metric on the product of two almost contact metric manifolds, Publ. Mat. 34 (1990), no. 1, 199-207.
- X. Chen, Notes on Ricci solitons in f-cosymplectic manifolds, Zh. Mat. Fiz. Anal. Geom. 13 (2017), no. 3, 242-253.
- D. Chinea and C. Gonzalez, A classification of almost contact metric manifolds, Ann. Mat. Pura Appl. (4) 156 (1990), 15-36. https://doi.org/10.1007/BF01766972
- U. C. De and K. De, On a class of three-dimensional trans-Sasakian manifolds, Commun. Korean Math. Soc. 27 (2012), no. 4, 795-808. https://doi.org/10.4134/CKMS.2012.27.4.795
- K. De and U. C. De, Projective curvature tensorin 3-dimensional connected trans-Sasakian manifolds, Acta Univ. Palackianae Olomucensis, Facultas Rerum Naturalium, Math. 55 (2016), 29-40.
- U. C. De and A. Sarkar, On three-dimensional trans-Sasakian manifolds, Extracta Math. 23 (2008), no. 3, 265-277.
- U. C. De and M. M. Tripathi, Ricci tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook Math. J. 43 (2003), no. 2, 247-255.
-
D. Debnath and A. Bhattacharyya, On generalized
$\varphi$ -recurrent trans-Sasakian manifolds, Acta Univ. Apulensis Math. Inform. No. 36 (2013), 253-265. - S. Deshmukh, Trans-Sasakian manifolds homothetic to Sasakian manifolds, Mediterr. J. Math. 13 (2016), no. 5, 2951-2958.
- S. Deshmukh, Geometry of 3-dimensional trans-Sasakaian manifolds, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 62 (2016), no. 1, 183-192.
- S. Deshmukh and F. Al-Solamy, A note on compact trans-Sasakian manifolds, Mediterr. J. Math. 13 (2016), no. 4, 2099-2104.
- S. Deshmukh, U. C. De, and F. Al-Solamy, Trans-Sasakian manifolds homothetic to Sasakian manifolds, Publ. Math. Debrecen 88 (2016), no. 3-4, 439-448. https://doi.org/10.5486/PMD.2016.7398
- S. Deshmukh and M. M. Tripathi, A note on trans-Sasakian manifolds, Math. Slovaca 63 (2013), no. 6, 1361-1370. https://doi.org/10.2478/s12175-013-0176-4
- O. Gil-Medrano, Relationship between volume and energy of vector fields, Differential Geom. Appl. 15 (2001), no. 2, 137-152.
- O. Gil-Medrano and E. Llinares-Fuster, Minimal unit vector fields, Tohoku Math. J. (2) 54 (2002), no. 1, 71-84. https://doi.org/10.2748/tmj/1113247180
- J. C. Gonzalez-Davila and L. Vanhecke, Examples of minimal unit vector fields, Ann. Global Anal. Geom. 18 (2000), no. 3-4, 385-404. https://doi.org/10.1023/A:1006788819180
- J. C. Gonzalez-Davila and L. Vanhecke, Minimal and harmonic characteristic vector fields on three-dimensional contact metric manifolds, J. Geom. 72 (2001), no. 1-2, 65-76. https://doi.org/10.1007/s00022-001-8570-4
- A. Gray and L. M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4) 123 (1980), 35-58.
- J. C. Marrero, The local structure of trans-Sasakian manifolds, Ann. Mat. Pura Appl. (4) 162 (1992), 77-86.
- Z. Olszak, Normal almost contact metric manifolds of dimension three, Ann. Polon. Math. 47 (1986), no. 1, 41-50. https://doi.org/10.4064/ap-47-1-41-50
- Z. Olszak, Locally conformal almost cosymplectic manifolds, Colloq. Math. 57 (1989), no. 1, 73-87. https://doi.org/10.4064/cm-57-1-73-87
- Z. Olszak and R. Rosca, Normal locally conformal almost cosymplectic manifolds, Publ. Math. Debrecen 39 (1991), no. 3-4, 315-323.
- A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen 32 (1985), no. 3-4, 187-193.
- D. Perrone, Almost contact metric manifolds whose Reeb vector field is a harmonic section, Acta Math. Hungar. 138 (2013), no. 1-2, 102-126.
- D. Perrone, Minimal Reeb vector fields on almost cosymplectic manifolds, Kodai Math. J. 36 (2013), no. 2, 258-274. https://doi.org/10.2996/kmj/1372337517
-
M. D. Siddiqi, A. Haseeb, and M. Ahmad, On generalized Ricci-recurrent (
${\epsilon},\;{\delta}$ )-trans-Sasakian manifolds, Palest. J. Math. 4 (2015), no. 1, 156-163. - L. Vanhecke and D. Janssens, Almost contact structures and curvature tensors, Kodai Math. J. 4 (1981), no. 1, 1-27. https://doi.org/10.2996/kmj/1138036310
- Y. Wang, Minimal Reeb vector fields on almost Kenmotsu manifolds, Czechoslovak Math. J. 67(142) (2017), no. 1, 73-86.
- G. Wiegmink, Total bending of vector fields on Riemannian manifolds, Math. Ann. 303 (1995), no. 2, 325-344.
- C. M. Wood, On the energy of a unit vector field, Geom. Dedicata 64 (1997), no. 3, 319-330. https://doi.org/10.1023/A:1017976425512
- A. Yildiz, U. C. De, and M. Turan, On 3-dimensional f-Kenmotsu manifolds and Ricci solitons, Ukrainian Math. J. 65 (2013), no. 5, 684-693. https://doi.org/10.1007/s11253-013-0806-6