DOI QR코드

DOI QR Code

SQUAREFREE ZERO-DIVISOR GRAPHS OF STANLEY-REISNER RINGS

  • Nikseresht, Ashkan (Department of Mathematics Institute for Advanced Studies in Basic Sciences)
  • Received : 2017.11.03
  • Accepted : 2018.06.01
  • Published : 2018.11.01

Abstract

Let ${\Delta}$ be a simplicial complex, $I_{\Delta}$ its Stanley-Reisner ideal and $K[{\Delta}]$ its Stanley-Reisner ring over a field K. Assume that ${\Gamma}(R)$ denotes the zero-divisor graph of a commutative ring R. Here, first we present a condition on two reduced Noetherian rings R and R', equivalent to ${\Gamma}(R){\cong}{\Gamma}(R{^{\prime}})$. In particular, we show that ${\Gamma}(K[{\Delta}]){\cong}{\Gamma}(K^{\prime}[{\Delta}^{\prime}])$ if and only if ${\mid}Ass(I_{\Delta}){\mid}={\mid}Ass(I_{{{\Delta}^{\prime}}}){\mid}$ and either ${\mid}K{\mid}$, ${\mid}K^{\prime}{\mid}{\leq}{\aleph}_0$ or ${\mid}K{\mid}={\mid}K^{\prime}{\mid}$. This shows that ${\Gamma}(K[{\Delta}])$ contains little information about $K[{\Delta}]$. Then, we define the squarefree zero-divisor graph of $K[{\Delta}]$, denoted by ${\Gamma}_{sf}(K[{\Delta}])$, and prove that ${\Gamma}_{sf}(K[{\Delta}){\cong}{\Gamma}_{sf}(K[{\Delta}^{\prime}])$ if and only if $K[{\Delta}]{\cong}K[{\Delta}^{\prime}]$. Moreover, we show how to find dim $K[{\Delta}]$ and ${\mid}Ass(K[{\Delta}]){\mid}$ from ${\Gamma}_{sf}(K[{\Delta}])$.

Keywords

References

  1. D. F. Anderson, A. Frazier, A. Lauve, and P. S. Livingston, The zero-divisor graph of a commutative ring. II, in Ideal theoretic methods in commutative algebra (Columbia, MO, 1999), 61-72, Lecture Notes in Pure and Appl. Math., 220, Dekker, New York, 2001.
  2. D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447. https://doi.org/10.1006/jabr.1998.7840
  3. C. Bocci, S. Cooper, E. Guardo, B. Harbourne, M. Janssen, U. Nagel, A. Seceleanu, A. Van Tuyl, and T. Vu, The Waldschmidt constant for squarefree monomial ideals, J. Algebraic Combin. 44 (2016), no. 4, 875-904.
  4. W. Bruns and J. Gubeladze, Combinatorial invariance of Stanley-Reisner rings, Georgian Math. J. 3 (1996), no. 4, 315-318. https://doi.org/10.1007/BF02256722
  5. W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1993.
  6. E. Connon and S. Faridi, Chorded complexes and a necessary condition for a monomial ideal to have a linear resolution, J. Combin. Theory Ser. A 120 (2013), no. 7, 1714-1731. https://doi.org/10.1016/j.jcta.2013.05.009
  7. J. Herzog and T. Hibi, Monomial Ideals, Graduate Texts in Mathematics, 260, Springer-Verlag London, Ltd., London, 2011.
  8. K. Kimura and N. Terai, Arithmetical rank of Gorenstein squarefree monomial ideals of height three, J. Algebra 422 (2015), 11-32. https://doi.org/10.1016/j.jalgebra.2014.09.005
  9. A. Nikseresht and R. Zaare-Nahandi, On generalization of cycles and chordality to clutters from an algebraic viewpoint, Algebra Colloq. 24 (2017), no. 4, 611-624.
  10. N. Terai and N. V. Trung, On the associated primes and the depth of the second power of squarefree monomial ideals, J. Pure Appl. Algebra 218 (2014), no. 6, 1117-1129. https://doi.org/10.1016/j.jpaa.2013.11.008
  11. R. Woodroofe, Vertex decomposable graphs and obstructions to shellability, Proc. Amer. Math. Soc. 137 (2009), no. 10, 3235-3246. https://doi.org/10.1090/S0002-9939-09-09981-X