DOI QR코드

DOI QR Code

Structural Safety Analysis of Launching System Through Monte-Carlo Simulation

몬테 카를로 시뮬레이션을 통한 발사관 구조 안전성 분석

  • Received : 2018.07.30
  • Accepted : 2018.12.05
  • Published : 2018.12.30

Abstract

Launching system is designed to store the payload, withstand the rigors, and prevent it from rusting and damaging. The behavior during initial deployment of the missile is determined by production, assembly and insertion condition of a launching tube and a missile. The purpose of this research is to confirm the safety of a launching tube by statistically analyzing behavior of the missile, during initial deployment stage. Error parameters which effect initial behavior of the missile are selected and analyzed through Monte-Carlo Simulation. Based on the result of simulation, tip-off and stress distribution between rail and shoe is predicted by using the commercial analysis program called Recurdyn. Lastly, the safety factor is calculated based on yield strength of the material and maximum stress of the rail during the process of launching. The safety of the launching system is verified from the result of the safety factors.

발사관은 탑재물을 보관하고 외부 환경으로부터 부식 및 파손되는 것을 방지하는 역할을 한다. 발사관과 유도탄의 제작, 조립 그리고 장입 상태에 따라 발사할 때 유도탄의 초기 거동을 결정하게 된다. 본 연구의 목적은 유도탄이 발사관에서 사출될 때 유도탄의 초기 거동을 결정하는 요소를 통계적으로 분석하여 발사관의 안전성을 확인하는 것이다. 유도탄이 발사될 때 거동에 영향을 주는 오차 요소들을 선정한 후 Monte-Carlo 시뮬레이션을 수행하여 통계적으로 분석하였다. 시뮬레이션 결과를 바탕으로, 각 오차 요소들을 고려한 다물체 동역학 해석을 상용프로그램인 Recurdyn을 이용하여 동역학 해석을 수행하여 유도탄 발사할 때 발생하는 중력 침하 및 레일과 슈 사이에 발생하는 응력을 구하였다. 해당 결과를 바탕으로 현재 설계된 발사관에 대한 안전성을 검증하였다.

Keywords

SMROBX_2018_v27n4_69_f0001.png 이미지

Fig. 1. Analysis flow using Monte-carlo Simulation and Recurdyn

SMROBX_2018_v27n4_69_f0002.png 이미지

Fig. 2. Schematic of launching system and missile

SMROBX_2018_v27n4_69_f0003.png 이미지

Fig 3. Thrust profile of missile

SMROBX_2018_v27n4_69_f0004.png 이미지

Fig 4. Modeling of launching system and missile for Recurdyn analysis

SMROBX_2018_v27n4_69_f0005.png 이미지

Fig. 5. Simulation result of missile’s trajectory

SMROBX_2018_v27n4_69_f0006.png 이미지

Fig. 6. Simulation result of missile’s impact points

SMROBX_2018_v27n4_69_f0007.png 이미지

Fig. 7. Angle between launch tube and missile (1st Case)

SMROBX_2018_v27n4_69_f0008.png 이미지

Fig. 8. Contact force and acceleration result without error and error case(5th case)

SMROBX_2018_v27n4_69_f0009.png 이미지

Fig. 9. Stress distribution at maximum stress case

SMROBX_2018_v27n4_69_f0010.png 이미지

Fig. 10. Maximum stress distribution at each case

SMROBX_2018_v27n4_69_f0011.png 이미지

Fig. 11. Maximum stress versus time result graph at eath rail(5th case)

Table 1. Error parameters for Monte-Carlo simulation

SMROBX_2018_v27n4_69_t0001.png 이미지

Table 2. Additional parameters for simulation

SMROBX_2018_v27n4_69_t0002.png 이미지

Table 3. Values of error parameters at the result of Monte-Carlo simulation

SMROBX_2018_v27n4_69_t0003.png 이미지

Table 4. Ejection time and tip-off rate of six cases

SMROBX_2018_v27n4_69_t0004.png 이미지

References

  1. Chung, J. W., Shin, S. M., Bae, Y. G. (2013), Test Technique for Performance Verification of Fracture-Type Canister Cover, Korea Institute of Military Service and Technology, Vol. 16, No. 4, pp.449-455 https://doi.org/10.9766/KIMST.2013.16.4.449
  2. Yang, Y. R. (2014), Study on the Removal Mechanism of Canister End Caps using the Shock Wave, Korea Society for Computational Fluids Engineering, pp. 283-285
  3. Ahn, J. S., Lim, B. S. (2001), Flexible Mutlibody Dynamic Analysis of Missile Behavior for the Initial Launching Stage, ADAMS User Conference
  4. Lee, H. Y., Song, O. S. (2008), Analysis of Launching Dynamics using Finite Element Method, Korea Institute of Military Service and Tehcnology, Vol. 11, No. 3, pp.13-18
  5. Jin, J. H., Jung, S., Kim, T. Y., Kim, Y. K., Ahn, C. G., Yoo, W. S. (2016), Accuracy of Fire of a Monitor via Multibody Dynamics Analysis, Transactions of the Korean Society of Mechanical Engineers - A, Vol. 40, No.2, pp.229-236 https://doi.org/10.3795/KSME-A.2016.40.2.229
  6. Kim, K. T. (2012), Statistical Analysis of Initial Behavior of a Vertically-launched Missile from Surface Ship, Korean Society for Noise and Vibration Engineering, Vol. 22, No. 9, pp.889-895 https://doi.org/10.5050/KSNVE.2012.22.9.889
  7. Lockheed Martin (2010), PAC-3 MSE missile launch
  8. Rubinstein, R. Y, Kroese, D. P. (2016), Simulation and the Monte Carlo Method, Vol. 10, John Wiley & Sons.
  9. Roberto, C. (2013), Monte Carl Methods using Matlab, University Ca'Foscari, Venice,
  10. Choi, J. H., Choi, J. H. (2015), Analysis Method for Multi-Flexible-Body Dynamics Solver in Recurdyn, Transactions of the KSME Industrial Technology and Innovation, Vol. 3, No. 2, pp.107-115 https://doi.org/10.3795/KSME-C.2015.3.2.107
  11. Choi, T. S, Kim, S. H. (2002), A Comparison of Efficiency Estimation Methods via Monte Carlo Analysis, The Korean Operations Research and Management Science Society, Vol. 19, No. 1 pp. 117-128
  12. Sung, H. G., Kim, B. S. (1993), Numerical Simulation Rocket Exhaust Flow in Cylindrical Launch Tube, Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 1, No. 21, pp.74-80