• Title/Summary/Keyword: Launching system

Search Result 253, Processing Time 0.028 seconds

Analytical Study on the Launching System with Gas Generator (가스발생기 발사시스템에 대한 해석적 연구)

  • 변종렬
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.3
    • /
    • pp.52-59
    • /
    • 2001
  • In this study, a technique has been developed to analyze the performance of the launching system using a gas generator of solid propellant. The physical model which described the thermodynamic behaviors of all launching devices from gas generator to canister and the dynamic behavior of missile was established, applying the empirical coefficients in the heat loss model. The processes of combustion, flow, and heat transfer inside the chamber of gas generator and the launching system were simulated by numerical method. The theoretical analysis guided the optimal design of gas generator and system, which made the launching system satisfy the requirements of good performance and high reliability.

  • PDF

System Trade Study of the Air-launching Rocket Using Sequential Optimization Technique (순차적 최적화를 이용한 공중발사 로켓 시스템 대안 분석)

  • Choi, Young-Chang;Lee, Jae-Woo;Byun, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.41-47
    • /
    • 2005
  • Conceptual design process is defined for the air-launching rocket by including analysis modules like mission analysis, staging, propulsion analysis, configuration, weight analysis, aerodynamics analysis and trajectory analysis. As a result of the conceptual design, the supersonic(M=1.5) air-launching rocket with hybrid engine for first stage propulsion system is designed. For the best system alternative selection, trade study for the 1st stage engine type and launching speeds using sequential optimization and confirming feasibility of baseline air-launching rocket has been performed. As a result of trade study, all alternatives are competitive in total weight and show only small difference in total weight per unit payload weight. Therefore, it is confirmed that the baseline air-launching rocket which has advantage in system safety especially in supersonic launching is feasible.

Launching Simulation of Integrated Mining System for Deep-Seabed Mineral Resources (심해저 광물자원 채광시스템의 설치 거동 해석)

  • Hong, Sup;Kim, Hyung-Woo;Choi, Jong-Su;Yeu, Tae-Kyeong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.315-318
    • /
    • 2006
  • This paper concerns about coupled dynamic analysis of the deep-seabed mining system in launching operation. The dynamic behavior of mining system consisting of lifting pipe, buffer station, flexible conduit and self-propelled miner is simulated in time domain. The launching operation is divided into four critical phases: (1) deployment of miner and flexible conduit, (2) deployment of lifting pipe, flexible conduit and miner, (3) touch-down of miner, (4) final launching. The dynamic responses of sub-systems - miner, flexible conduit, buffer and lifting pipe - are analyzed in each launching phase. According to the changing periods of forced excitation at the top, the dynamic responses of sub-systems are diverse in their characteristics. It has been shown that the total integrated responses of sub-systems are strongly affected by the design parameters. Especially, the principal dimensions of flexible conduit seem to be significant in determining of the global response. Based on the simulation results, safe operation conditions are investigated.

  • PDF

A Development of Floating Dock Controller for Skid Launching System (Skid Launching System을 위한 Floating Dock Controller의 개발)

  • Kim, Jee-Hun;Lee, Jang-Yong;Park, Sok-Chu
    • Journal of Navigation and Port Research
    • /
    • v.33 no.6
    • /
    • pp.375-380
    • /
    • 2009
  • The authors had consisted the construction of shipyard must be investigated under the consideration of long term ship's demand and so the Floating Dock might be an alternative to the dry dock. This paper shows a development of Floating Dock Controller for Skid Launching System(SLS). While loading out a block to the Floating Dock and launching ship from the Floating Dock, the balancing of the ship and the dock is very important and achieved by adjusting the Ballast tank of the Floating Dock In this paper a Floating Dock Controller for SLS was developed through the on-line interface of VRC(Valve Remote Control), Tank Level & Draft Measuring System and Valve Control algorithm on Tank Plan. The control system developed was applied to a shipbuilding and verified good and stable.

A Development of Floating Dock Control Simulator for Skid Launching System (Skid Launching System을 위한 Floating Dock Control Simulator의 개발)

  • Kim, Jee-Hun;Lee, Jang-Yong;Park, Sok-Chu
    • Journal of Navigation and Port Research
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Since the shipbuilding industry is at its peak to assimilate the large volume of orders in recent years, the Floating Dock has been an alternative to the dry dock which takes a certain period of time to build. Hence the use of Floating Dock is steadily increasing. Since the Skid Launching System(SLS) is used in Floating Dock, the balancing of the ship while launching is important and achieved by adjusting the Ballast tank of the Floating Dock. In this paper a Floating Dock Control Simulator for SLS is developed through the on-line interface of VRC(Valve Remote Control), Tank Level & Draft Measuring System and Valve Control algorithm on Simulation Tank Plan.

A study on Applicability in Super Cavitation with SLBM of North Korea

  • Oh, Kyunngwon;Lee, Kyounghaing
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.2
    • /
    • pp.9-13
    • /
    • 2016
  • This study is about technical analysis in launching SLBM of North Korea. We expect that North Korea develop ICBM and SLBM by improving the technique called R-27. Also it is expected that they attempt to achievement in covertness and ambush by completing technique of cold launching. Recently, SLBM of North Korea rised 40 ~ 50 m on surface after launching in an underwater when they showed the scene of firing SLBM. We expect that they actively use not general technique but super cavitation technique. Also, they might improve the launching technique by doing SLBM launching test. This type is about that whole rocket is separated two parts and ignited with high velocity and we might think that 1st rocket is used in solid propellant to maneuver in high velocity in an underwater. After then, they might use liquid propellant for the long-range ballistic missile.

Structural Safety Analysis of Launching System Through Monte-Carlo Simulation (몬테 카를로 시뮬레이션을 통한 발사관 구조 안전성 분석)

  • Park, Chul-Woo;Lee, Onsoo;Shin, Hyo-Sub;Park, Jin-Yong;Lee, Dong-Ju
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.4
    • /
    • pp.69-77
    • /
    • 2018
  • Launching system is designed to store the payload, withstand the rigors, and prevent it from rusting and damaging. The behavior during initial deployment of the missile is determined by production, assembly and insertion condition of a launching tube and a missile. The purpose of this research is to confirm the safety of a launching tube by statistically analyzing behavior of the missile, during initial deployment stage. Error parameters which effect initial behavior of the missile are selected and analyzed through Monte-Carlo Simulation. Based on the result of simulation, tip-off and stress distribution between rail and shoe is predicted by using the commercial analysis program called Recurdyn. Lastly, the safety factor is calculated based on yield strength of the material and maximum stress of the rail during the process of launching. The safety of the launching system is verified from the result of the safety factors.

Techniques of Optimizing the Launching Nose under Conditions of Minimizing the Launching Bending Moment (압출가설시 발생하는 휨모멘트의 최소화 조건을 통한 압출노즈의 최적설계)

  • Choi, Hang Yong;Suh, Suk Koo;Oh, Myung Seok;Oh, Sae Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.487-495
    • /
    • 2008
  • The behavior of nose-deck system during launch was examined by three dimensionless launching parameters, such as the relative flexural stiffness, the relative nose weight, and the relative nose length. The techniques of optimizing the launching nose were illustrated and equations of relationship between relative nose weight and relative nose length were derived under minimum conditions of the launching negative and positive moment. Equations of maximum positive and negative moment were suggested under the conditions. The optimum design method of the launching nose was proposed in launched continuous girder bridges. It was found that the ideal launching nose was to design that with the relative nose weight of 0.167 and the relative nose length of 0.836 to minimize absolute values of the positive and negative moment during launch.

Optimal Supersonic Air-Launching Rocket Design Using Multidisciplinary System Optimization Approach (다분야 최적화 기법을 이용한 공중발사로켓 최적설계)

  • Choi Young Chang;Lee Jae-Woo;Byun Yung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.11-15
    • /
    • 2005
  • Compared with the conventional ground rocket launching, air-launching has many advantages. However, comprehensive and integrated system design approach is required because the physical geometry of air launch vehicle is quite dependent on the installation limitation of the mother plane. The system design has been performed using two different approaches: the sequential optimization and the multidisciplinary feasible(MDF) optimization method. Analysis modules include mission analysis, staging, propulsion analysis, configuration, weight analysis, aerodynamics analysis and trajectory analysis. MDF optimization shows better result than sequential optimization. As a result of system optimization, a supersonic air launching rocket with total mass of 1244.91 kg, total length of 6.18 m, outer diameter of 0.60 m and the payload mass of 7.5 kg has been successfully designed.

  • PDF

Optimal Supersonic Air-Launching Rocket Design Using Multidisciplinary System Optimization Approach (다분야 최적화 기법을 이용한 공중발사 로켓 최적설계)

  • Choi, Young-Chang;Lee, Jae-Woo;ByUn, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.26-32
    • /
    • 2005
  • Compared with the conventional ground rocket launching, air-launching has many advantages. However, a comprehensive and integrated system design approach is required because the physical geometry of air launch vehicle is quite dependent on the installation limitation of the mother plane. The system design has been performed using two different approaches: the sequential optimization and the multidisciplinary feasible(MDF) optimization method. Analysis modules include mission analysis, staging, propulsion analysis, configuration, weight analysis, aerodynamics analysis and trajectory analysis. MDF optimization shows better results than the sequential optimization. As a result of system optimization, a supersonic air launching rocket with total mass of 1244.91kg, total length of 6.36m, outer diameter of 0.60m and the payload mass of 7.5kg has been successfully designed.