DOI QR코드

DOI QR Code

Ground Clutter Modelling and Its Effect of Detection Performance in FOD FMCW Radar

FOD 탐지 FMCW 레이다에서 지면 클러터 모델링 및 탐지성능에 대한 영향 분석

  • Received : 2018.10.11
  • Accepted : 2018.12.05
  • Published : 2018.12.30

Abstract

This paper deals with ground clutter model for FOD (foreign object debris) surveillance FMCW (frequency modulated continuous waveform) radar. In the FOD surveillance radar, it has received not only the signals reflected by FOD, but also the clutters of the surface of the runway and the grassland simultaneously. However, to detect the FOD, the clutter rejection algorithm is necessary because the RCS (radar cross section) of FOD is nearly same to RCS of the grassland. In addition, it is difficult to apply the MTI (moving target indicator) algorithm as the clutter rejection algorithm because both the FOD and the clutter coexist stationarily. Hence, to remove the stationary clutter, it is crucial to accurately generate clutter map considering the surface of road. In this paper, in order to generate the clutter map, the respective beat signal at every range bin is generated in the case of only the surface without FOD, and then the beat signal accumulated 100 times. And also, Weibull distribution is applied to the RCS value to take the scattering distribution of clutter into consideration. The simulation results show that FOD can be well detected by applying the generated clutter map to the FOD FMCW radar.

본 논문에서는 FOD (foreign object debris) FMCW (frequency modulated continuous waveform) 레이다에 대한 지상 클러터 모델링 및 검출 성능에 미치는 영향을 분석한다. 레이다 수신신호에는 FOD에 의해 반사된 신호 뿐 만 아니라 활주로 표면 및 잔디영역에 의해 반사된 신호까지 포함된다. FOD의 RCS (radar cross section)가 잔디영역의 RCS와 거의 같기 때문에 클러터 제거 알고리즘을 적용하지 않으면 FOD의 검출이 어렵다. 또한, FOD와 클러터 모두가 움직이지 않기 때문에, 대표적 클러터 제거 알고리즘인 MTI (moving target indicator) 기법의 적용이 어렵다. 따라서 클러터 맵을 이용한 클러터 제거 기법이 필요하고, 이를 위해서는 활주로 표면을 고려한 클러터 맵을 정확하게 생성하는 것이 중요하다. 본 논문에서는 신뢰도 높은 클러터 맵을 생성하기 위해 FOD가 없는 표면의 경우에만 모든 범위의 레인지 빈에 대해 각각의 비트신호를 생성하고, 생성된 비트 신호를 100번 누적하였으며 RCS 값에 웨이블 분포를 적용하였다. 시뮬레이션 결과는 생성된 클러터 맵을 FOD FMCW 레이다에 적용함으로써 FOD가 제대로 검출됨을 보인다.

Keywords

SMROBX_2018_v27n4_61_f0001.png 이미지

Fig. 1. FMCW radar waveform

SMROBX_2018_v27n4_61_f0002.png 이미지

Fig. 2. Ground Clutter

SMROBX_2018_v27n4_61_f0003.png 이미지

Fig. 3. Runway Model

SMROBX_2018_v27n4_61_f0004.png 이미지

Fig. 4. RCS Simulation Result in the runway

SMROBX_2018_v27n4_61_f0005.png 이미지

Fig. 5. Simulation results of the characteristics of the received signal with only surface clutter

SMROBX_2018_v27n4_61_f0006.png 이미지

Fig. 6. Generation of surface clutter and clutter cancellation algorithm

SMROBX_2018_v27n4_61_f0007.png 이미지

Fig. 7. Simulation results of the characteristics of the received signal with FOD and surface clutter

SMROBX_2018_v27n4_61_f0008.png 이미지

Fig. 8. Signal to clutter ratio according to RCS

Table 1. Parameters of runway model

SMROBX_2018_v27n4_61_t0001.png 이미지

Table 2. Coefficients according to surface types

SMROBX_2018_v27n4_61_t0002.png 이미지

Table 3. Parameters of radar system

SMROBX_2018_v27n4_61_t0003.png 이미지

References

  1. The Federal Aviation Administration (FAA), Airport Foreign Object Debris(FOD) Management, US Department of Transportation, Washington D.C., 2011.
  2. J. Lee, Development of Automatic Detection System for Foreign Objects (FOD) in Runways, Ministry of Land, Infrastructure and Transport, Sejong, 2014.
  3. Y.S. Jin, E.G Hyun, S.D. Kim, B.S. Kim, J.H. Lee, "Low Complexity FMCW Surveillance Radar Algorithm Using Phase Difference of Dual Chirps," IEMEK Journal of Embedded Systems and Applications, Vol 12, No 2, pp. 71-77, 2017. https://doi.org/10.14372/IEMEK.2017.12.2.71
  4. E.E. Herricks, D. Mayer, S. Majumdar, Foreign Object Debris Characterization at a Large International Airport, US Department of Transportation, Washington D.C., 2015.
  5. G. Mehdi, J. Miao, "Millimeter Wave FMCW Radar for Foreign Object Debris (FOD) Detection at Airport Runways," Proc. of 2012 9th International Bhurban Conference, pp.407-412, 2012.
  6. H. Seo, H. Park, and K. Lee "Convenient Radar Received Power Prediction Method for North Korea SLBM Detection," Journal of the Korea Society for Simulation, Vol. 26. No. 2, pp.51-58, 2017. https://doi.org/10.9709/JKSS.2017.26.2.051
  7. S. Ko, "Spectrum Analysis of UWB Radar Transmitter for Short Range Automobile Application," IEMEK Journal of Embedded Systems and Applications, Vol 10, No 2, pp. 57-64, 2015. https://doi.org/10.14372/IEMEK.2015.10.2.57
  8. K.B. Lee, J.G. Lee, D.H. Kim, "A Study for Efficient Foreign Object Debris Detection on Runways," Journal of the Korean Society for Aviation and Aeronautics, Vol. 22, No. 1, pp.130-135, 2014. https://doi.org/10.12985/ksaa.2014.22.1.130
  9. Z. Lili, W. Hong, W. Xuegang, "Non-Rayleigh Distribution Clutter Modeling of FOD Surveillance Radar on Runways," Proc. of 2013 IEEE International Conference, pp.1-4, 2013.
  10. J. Zhang, C. Zheng, B. Yang, X. Yao, J. Miao, "Design Procedures and Considerations of FOD Detection Millimeter-Wave FMCW Radar," Proc. of 2013 IEEE International Conference, pp. 1612-1617, 2013.
  11. B.S. Kim, S.D Kim, J.H. Lee, "Low Complexity Super Resolution Algorithm for FOD FMCW Radar Systems," IEMEK Journal of Embedded Systems and Applications, Vol 13, No 1, pp. 1-8, 2018. https://doi.org/10.14372/IEMEK.2018.13.1.1
  12. B.R. Mahafa, "Radar System Analysis and Design Using MATLAB," CHAPMAN&HALL/CRC, Washington D.C., 2000.
  13. H.H. Ko, K.W. Cheng, H.J. Su, "Range Resolution Improvement for FMCW Radars," Proc. of 2008 European Radar Conference, pp 352-355, 2008.
  14. http://www.law.go.kr/admRulLsInfoP.do?admRulSeq=2100000089849.
  15. C.H. Nam, S.W. Ra, "Approximated Modeling Technique of Weibull Distributed Radar Clutter," The Journal of Korean Institute of Electromagnetic Engineering and Science, Vol. 23, No. 7, pp.822-830, 2012. https://doi.org/10.5515/KJKIEES.2012.23.7.822
  16. P.D.L. Beasley, G. Binns, R.D. Hodges, R.J. Badley, "Tarsier(R), a Millimetre Wave Radar for Airport Runway Debris Detection," Proc. of First European Radar Conference, pp. 261-264, 2004.