DOI QR코드

DOI QR Code

Influence of Carbon Fiber Direction on Mechanical Properties of Milled Carbon Fibers/Carbon Blacks/Natural Rubber Compounds

탄소섬유 방향이 미분쇄 탄소섬유/카본블랙/천연고무 복합재료의 기계적 물성에 미치는 영향

  • Received : 2016.01.23
  • Accepted : 2016.03.08
  • Published : 2016.04.10

Abstract

In this work, the influence of milled carbon fiber direction on mechanical properties of milled carbon fibers/carbon blacks/natural rubber compounds was investigated. The compounds were prepared by adding the 6 phr milled carbon fibers (MCFs) and 40 phr carbon blacks (CBs) into the natural rubber. The MCFs were aligned in a parallel and orthogonal direction in the compounds using two-roll-mill machine. Mechanical properties of compounds were studied by tensile characteristics and tearing strength. As a result, the compounds showed higher tensile strength, 100%~300% modulus, and tearing strength than those of using any other compounds due to the aligning MCFs in parallel. Mechanical properties of the compounds reinforced with non-aligned MCFs were inferior to those of others. Consequently, the parallel aligned MCFs in the compounds led to an increase of tensile properties and improvement of tearing strength, resulted from MCFs with the high elastic modulus.

본 연구에서는 미분쇄 탄소섬유/카본블랙/천연고무 복합재료의 미분쇄 탄소섬유 방향이 기계적 특성에 미치는 영향을 알아보았다. 복합재료는 6 phr 미분쇄 탄소섬유와 40 phr 카본블랙을 천연고무에 첨가하였고 2축-롤-밀 장비를 이용하여 복합재료 내의 미분쇄 탄소섬유를 수직, 수평으로 정렬방향을 제어하였다. 기계적 특성은 인장특성, 인열강도를 통해 고찰하였다. 실험 결과, 인장강도, 100%~300% 모듈러스, 인열강도는 미분쇄 탄소섬유가 수직으로 배향되었을 때 그렇지 않았을 때보다 증가하였고 미분쇄 탄소섬유를 정렬하지 않은 복합재료의 기계적 물성은 감소하였다. 결과적으로, 복합재료 내에서 미분쇄 탄소섬유가 수직으로 배향되었을 때 인장특성과 인열강도의 증가로 이어진 결과이며, 이러한 결과는 탄성력이 우수한 미분쇄 탄소섬유의 존재가 기인하였기 때문이라고 판단된다.

Keywords

References

  1. S. M. Hosseini and M. R. Kashani, Vulcanization Kinetics of Nano-Silica Filled Styrene Butadiene Rubber, Polymer, 55, 6426-6434 (2014). https://doi.org/10.1016/j.polymer.2014.09.073
  2. C. S. Ryu, C. K. Hong, C. W. Moon, and S. Y. Kaang, Effects of Particle Size and Structure of Fillers on the Friction and Wear Behavior of Filled Elastomer, Elastomer, 41, 194-204 (2006).
  3. K. D. Pyo and C. C. Park, A Study on the Friction and Anti-abrasion Properties of Rubber Blends for Shoes Outsole, Elastomers Compos., 46, 324-328 (2011).
  4. M. C. Li, Y. Zhang, and U. R. Cho, Mechanical, Thermal and Friction Properties of Rice Bran Carbon/Nitrile Rubber Composites: Influence of Particle Size and Loading, Mater. Des., 63, 565-574 (2014). https://doi.org/10.1016/j.matdes.2014.06.032
  5. D. G. Papageorgiou, I. A. Kinloch, and R. J. Young, Graphene/Elastomer Nanocomposites, Carbon, 95, 460-484 (2015). https://doi.org/10.1016/j.carbon.2015.08.055
  6. N. Rattanasom, S. Prasertsri, and T. Ruangritnumchai, Comparison of the Mechanical Properties at Similar Hardness Level of Natural Rubber Filled with Various Reinforcing-Fillers, Polym. Test., 28, 8-12 (2009). https://doi.org/10.1016/j.polymertesting.2008.08.004
  7. Y. S. Cho and D. H. Cho, Effect of Kenaf Fiber Loading on the Properties of Natural Fiber/Natural Rubber Composites, Elastomers Compos., 46, 186-194 (2011).
  8. F. Cataldo, Study on the Reinforcing Effect of Milled Carbon Fibers in a Natural Rubber Based Composite, J. Macromol. Sci. Part B, Phys., 47, 818-828 (2008). https://doi.org/10.1080/00222340802122798
  9. L. L. Wang, L. Q. Zhang, and M. Tian, Mechanical and Tribological Properties of Acrylonitrile-Butadiene Rubber Filled with Graphite and Carbon Black, Mater. Des., 39, 450-457 (2012). https://doi.org/10.1016/j.matdes.2012.02.051
  10. S. M. Kim, C. S. Nam, and K. J. Kim, TMTD, MBTS, and CBS Accelerator Effects on a Silica Filled Natural Rubber Compound upon Vulcanization Properties, Appl. Chem. Eng., 22, 144-148 (2011).
  11. A. I. Dacikj, G. B. Gaceva, S. Rooj, S. Wiebner, and G. Heinrich, Fine Tuning of the Dynamic Mechanical Properties of Natural Rubber/Carbon Nanotube Nanocomposites by Organically Modified Montmorillonite: A First Step in Obtaining High-Performance Damping Material Suitable for Seismic Application, Appl. Clay Sci., 118, 99-106 (2015). https://doi.org/10.1016/j.clay.2015.09.009
  12. S. M. Park, Y. W. Lim, C. H. Kim, D. J. Kim, W. J. Moon, J. H. Kim, J. S. Lee, C. K. Hong, and G. Seo, Effect of Carbon Nanotubes with Different Lengths on Mechanical and Electrical Properites of Silica-Filled Styrene Butadiene Rubber Compounds, J. Ind. Eng. Chem., 19, 712-719 (2013). https://doi.org/10.1016/j.jiec.2012.10.012
  13. C. Y. Choi, S. M. Kim, Y. H. Park, M. K. Jang, J. W. Nah, and K. J. Kim, Effects of Thiuram, Thiazole, and Sulfenamide Accelerators on Silica Filled Natural Rubber Compound upon Vulcanization and Mechanical Properties, App. Chem. Eng., 22, 411-415 (2011).
  14. B. Omnes, S. Thuillier, P. Pilvin, Y. Grohens, and S. Gillet, Effective Properties of Carbon Black Filled Natural Rubber: Experiments and Modeling, Compos. A, 39, 1141-1149 (2008). https://doi.org/10.1016/j.compositesa.2008.04.003
  15. S. J. Park, M. K. Seo, M. L. Park, and H. Y. Kim, 1st ed., 31-202, Carbon Materials, Myoungmoon, Seoul, Korea (2015).
  16. W. Luheng, D. Tianhuai, and W. Peng, Influence of Carbon Black Concentration on Piezoresistivity for Carbon-Black-Filled Silicone Rubber Composite, Carbon, 47, 3151-3157 (2009). https://doi.org/10.1016/j.carbon.2009.06.050
  17. S. J. Park, K. S. Cho, M. Zaborski, and L. Slusarski, Filler-Elastomer Interactions. 10. Ozone Treatment on Interfacial Adhesion of Carbon Blacks/NBR Compounds, Elastomer, 38, 139-146 (2003).
  18. Y. Hoshikawa, B. An, S. Kashihara, T. Ishii, M. Ando, S. Fujisawa, K. Hayakawa, S. Hamatani, H. Yamada, and T. Kyotani, Analysis of the Interaction Between Rubber Polymer and Carbon Black Surfaces by Efficient Removal of Physisorbed Polymer from Carbon-Rubber Composites, Carbon, 99, 148-156 (2016). https://doi.org/10.1016/j.carbon.2015.12.003
  19. C. Unterweger, J. Duchoslav, D. Stifter, and C. Furst, Characterization of Carbon Fiber Surfaces and Their Impact on the Mechanical Properties of Short Carbon Fiber Reinforced Polypropylene Composites, Compos. Sci. Technol., 108, 41-47 (2015). https://doi.org/10.1016/j.compscitech.2015.01.004
  20. S. R. Ryu and D. J. Lee, Effects of Short-Fiber Aspect Ratio and Diameter Ratio on Tensile Properties of Reinforced Rubber, Compos. Res., 16, 18-25 (2003).
  21. H. J. Won, D. G. Seong, J. W. Lee, and M. K. Um, A Study on the Effect of Fiber Orientation on Impact Strength and Thermal Expansion Behavior of Carbon Fiber Reinforced PA6/PPO Composites, Compos. Res., 27, 52-58 (2014). https://doi.org/10.7234/composres.2014.27.2.052
  22. K. C. Chae, S. H. Jo, and E. G. Kim, 3-Dimensional Deformation Analysis for Compression Molding of Polymeric Composites with Random/Unidirectional Fiber-Reinforced Laminates, Compos. Res., 12, 23-30 (1999).
  23. J. C. Halpin and J. L Kardos, The Halpin-Tsai Equations: A Review, Polym. Eng. Sci., 16, 344-352 (1976). https://doi.org/10.1002/pen.760160512
  24. E. Giner, A. Vercher, M. Marco, and C. Arango, Estimation of the Reinforcement Factor ${\zeta}$ for Calculating the Transverse Stiffness $E_2$ with the Halpin-Tsai Equations Using the Finite Element Method, Compos. Struct., 124, 402-408 (2015). https://doi.org/10.1016/j.compstruct.2015.01.008
  25. C. W. Nah, J. M. Rhee, W. D. Kim, S. Y. Kaang, Y. W. Chang, and S. J. Park, Effects of Chemical Surface Modification of Carbon Black on Vulcanization and Mechanical Properties of Styrene- Butadiene Rubber Compound, Elastomer, 36, 44-51 (2001).
  26. L. Jong, Influence of Protein Hydrolysis on the Mechanical Properties of Natural Rubber Composites Reinforced with Soy Protein Particles, Ind. Crops Prod., 65, 102-109 (2015). https://doi.org/10.1016/j.indcrop.2014.12.004
  27. T. Theppradit, P. Prasassarakich, and S. Poompradub, Surface Modification of Silica Particles and Its Effects on Cure and Mechanical Properties of the Natural Rubber Composites, Mater. Chem. Phys., 148, 940-948 (2014). https://doi.org/10.1016/j.matchemphys.2014.09.003
  28. J. F. Fu, W. Q. Yu, X. Dong, L. Y. Chen, H. S. Jia, L. Y. Shi, Q. D. Zhong, and W. Deng, Mechanical and Tribological Properties of Natural Rubber Reinforced with Carbon Blacks and $Al_2O_3$ Nanoparticles, Mater. Des., 49, 336-346 (2013). https://doi.org/10.1016/j.matdes.2013.01.033
  29. I. M. Meththananda, S. Parker, M. P. Patel, and M. Braden, The Relationship Between Shore Hardness of Elastomeric Dental Materials and Young's Modulus, Dent. Mater., 25, 956-959 (2009). https://doi.org/10.1016/j.dental.2009.02.001
  30. J. H. Sung, S. R. Ryu, and D. J. Lee, Effects of Strain-Induced Crystallization on Mechanical Properties of Elastomeric Composites Containing Carbon Nanotubes and Carbon Black, Trans. Korean Soc. Mech. Eng. A, 35, 999-1005 (2011). https://doi.org/10.3795/KSME-A.2011.35.9.999