DOI QR코드

DOI QR Code

Techno-economic Evaluation of an Ethanol Production Process for Biomass Waste

바이오매스 폐기물의 에탄올 생산 공정의 기술경제성 평가

  • Gwak, In-seop (Department of Mineral Resource & Energy Engineering, Chonbuk National University) ;
  • Hwang, Jong-Ha (Department of Mineral Resource & Energy Engineering, Chonbuk National University) ;
  • Lee, See Hoon (Department of Mineral Resource & Energy Engineering, Chonbuk National University)
  • 곽인섭 (전북대학교 자원.에너지 공학과) ;
  • 황종하 (전북대학교 자원.에너지 공학과) ;
  • 이시훈 (전북대학교 자원.에너지 공학과)
  • Received : 2016.01.14
  • Accepted : 2016.02.22
  • Published : 2016.04.10

Abstract

Extensive efforts from all over the world have been made to solve energy problems, such as high oil prices, global warning due to the depletion of oil. Among them, biofuel has been drawing attention as a clean energy, which can replace fossil fuels. However, conventional biofuels were often converted from eatable biomass such as sugar cane, corn and soy which should be replaced with uneatable biomass. In this study, a techno-economical evaluation of the gasification of biomass waste with mixed alcohol synthesis process was performed. Considering available domestic biomass wastes, a 2000 ton/day conversion plant were assumed to produce 533000 L/day ethanol. Also, financial data from previous studies were evaluated and used and economical sensitivities with various operation conditions were established. Economic analysis were conducted by the payback period and internal rate of return (IRR) and net present value (NPV). Sensitivity analyses of raw material costs, initial investment, the major process cost, ethanol price changes and operating costs were all performed.

세계 각국은 석유자원의 고갈로 인한 고유가, 지구온난화 등의 환경문제를 해결하기 위하여 많은 노력을 하고 있다. 그중 기존 화석연료를 대체할 수 있는 재생 가능한 청정 에너지원으로 바이오 연료가 주목받고 있다. 그러나 기존의 바이오연료 생산기술은 식량자원인 사탕수수, 옥수수 등을 사용하므로 이를 대체하는 기술개발이 요구되고 있다. 이에 본 연구에서는 식량자원을 대체할 폐기물의 가스화와 혼합 알코올 합성공정이 연계된 간접 알코올 전환 공정의 기술 경제성 평가를 수행하였다. 국내에서 공급되는 바이오매스 폐기물 자원량을 고려한 2000톤/일 급의 전환 공정에서 매일 533000 L의 연료용 에탄올을 생산한다고 가정하였고 이를 위해 필요한 경제성 자료는 기발표된 자료들로부터 계산되어 경제성 분석에 이용되었다. 경제성 분석은 원금회수기간과 내부수익률(internal rate of return, IRR) 및 순현재가치(Net Present Value, NPV)로 진행되었으며, 원료비용과 초기 투자비, 주요 공정비용 및 에탄올 가격 변화, 운용비용의 민감도 분석을 진행하여 각 항목별 민감도를 고찰하였다.

Keywords

References

  1. IEA, World Energy Outlook (2012).
  2. J. W. Kook and S. H. Lee, Analysis of biomass energy potential around major cities in South Korea, Appl. Chem. Eng., 26, 178-183 (2015). https://doi.org/10.14478/ace.2015.1005
  3. J. W. Kook, S. J. Jeon, S. Y. Park, H. S. Yoo, J. H. Shin, and S. H. Lee, Analysis of energy potential from biomass resource map, J. Kor. Soc. Waste Manag., 30(5), 505-511 (2013). https://doi.org/10.9786/kswm.2013.30.5.505
  4. A. Y. Lee, J. K. Koo, Intermediate indicators and sustainability of Renewable Fuel Standard, J. Kor. Org. Resour. Recycl. Assoc., 22(1), 20-26 (2014). https://doi.org/10.17137/KORRAE.2014.22.1.20
  5. J. W. Kook, J. H. Shin, I. S. Gwak, and S. H. Lee, A reaction Kinetic Study of $CO_2$ Gasification of Petroleum Coke, Biomass and Mixture, Appl. Chem. Eng., 26(2), 184-190 (2015). https://doi.org/10.14478/ace.2015.1006
  6. Y. Yun, Coal gasification technologies: past experience and future direction in Korea, Clean Coal Day in Japan 2006, 1-20 (2006).
  7. H. W. Ra, S. H. Lee, S. J. Yoon, Y. C. Choi, J. H. Kim, and J. G. Lee, Entrained-flow coal water slurry gasification, Korean J. Chem. Eng., 48(2), 129-139 (2010).
  8. S. H. Lee, S. J. Yoon, Y. C. Choi, J. H. Kim, and J. G. Lee, Characteristics of coal methanation in a hydrogasifier, Korean J. Chem. Eng., 44(6), 631-635 (2006).
  9. S. J. Yoon, Y. C. Choi, S. H. Lee, and J. G. Lee, Thermogravimetric study of coal and petroleum coke for co-gasification, Korean J. Chem. Eng., 24(3), 512-517 (2007). https://doi.org/10.1007/s11814-007-0090-y
  10. S. H. Lee, K. B. Choi, J. G. Lee, and J. H. Kim, Gasification characteristics of combustible wastes in a 5 ton/day fixed bed gasifier, Korean J. Chem. Eng., 23(4), 576-580 (2006). https://doi.org/10.1007/BF02706797
  11. E. M. A. Edreis, G. Luo, A. Li, C. Chao, H. Hu, S. Zhang, B. Gui, L. Xiao , K. Xu, P. Zhang, and H. Yao, $CO_2$ co-gasification of lower sulphur petroleum coke and sugar cane bagasse via TG-FTIR analysis technique, Bioresour. Technol., 136, 595-603 (2013). https://doi.org/10.1016/j.biortech.2013.02.112
  12. S. Phillips, A. Aden, J. Jechura, and D. Dayton, Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass Technical Report NREL/TP-510-41168 (2007).
  13. Spath, P. Aden, A. Eggeman, T. Ringer, M. Wallace, and B. Jechura, J, Biomass to Hydrogen Production Detailed Design and Economics Utilizing the Battelle Columbus Laboratory Indirectly- Heated Gasifier Technical Report NREL/TP-510-37408 (2005).
  14. Nexant, Inc., Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment. Task 9: Mixed Alcohols from Syngas- State of Technology, Technical Report NREL/SR-510-39947 (2006).
  15. P. Forzatti, E. Tronconi, and I. Pasquon, Higher Alcohol Synthesis, Cat. Rev. Sci. Eng., 33(1-2), 109-168 (1991). https://doi.org/10.1080/01614949108020298
  16. J. W. Park, J. S. Bae, Y. J. Kweon, H. J. Kim, J. Jung, and C. Han, Economic Evaluation of DCL/ICL processes, Korean Chem. Eng. Res., 47(6), 781-787 (2009).
  17. L. V. Bibber, E. Shuster, J. Haslbeck, M. Rutkowski, S. Olson, and S. Kramer, Technical and economic assessment of small-scale fischer-tropsch liquids facilities, DOE/NETL-2007/1253, NETL, USA (2007).
  18. NETL, Capital cost scaling methodology, DOE/NETL-341/013113, National Energy Technology Laboratory, USA (2013).
  19. http://www.tradingeconomics.com/commodity/ethanol.
  20. J. M. Lee, D. W. Kim, J. S. Kim, J. J. Kim, and H. S. Kim, Economic feasibility of conversion of the pulverized coal firing boiler using korean anthracite into a circulating fluidized bed boiler, Korean Chem. Eng. Res., 44(5), 489-497 (2006).