DOI QR코드

DOI QR Code

A Study on Surface Modification of Nanorod Electrodes for Highly Sensitive Nano-biosensor

고감도 나노-바이오센서를 위한 나노로드 전극 표면 개질에 관한 연구

  • Lee, Seung Jun (Micro/Nano Bioengineering Laboratory, Department of Biological and Agricultural Engineering, The University of Georgia)
  • Received : 2016.01.29
  • Accepted : 2016.03.10
  • Published : 2016.04.10

Abstract

Among many kinds of bioaffinity sensors, the avidin-biotin system has been widely used in a variety of biological applications due to the specific and high affinity interaction of the system. In this work, gold nanorods with high surface area were explored as electrodes in order to amplify the signal response from the avidin-biotin interaction which can be further utilized for avidin-biotin biosensors. Electrochemical performance of electrodes modified with nanorods and functionalized with avidin in response to interactions with biotin at various concentrations using $[Fe(CN)_6]^{3-/4-}$ couple as the redox probe were investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). A very low biotin concentration of less than 1 ng/mL could be detected using the electrodes modified with nanorods.

많은 생체 친화적인 센서들 중에서 avidin-biotin system은 높은 상호 특이적인 친화성으로 인하여 많은 생물학적인 응용 연구에 이용되어 왔다. 효과적인 avidin-biotin 바이오센서 개발을 위해 avidin-biotin 간의 상호 반응성을 증대시키기 위해서는 높은 표면적을 가지는 전극이 필요하다. 본 연구에서는 이러한 목적을 위해 gold nanorods electrode를 사용하였다. 전기화학적인 특성은 cyclic voltammetry (CV)와 electrochemical impedance spectroscopy (EIS)를 가지고 redox couple $[Fe(CN)_6]^{3-/4-}$를 사용하여 다양한 biotin의 농도에 따라 분석되었다. 결론적으로 nanorod의 전극은 1 ng/mL보다 낮은 biotin의 농도도 감지할 수 있음을 보였다.

Keywords

References

  1. J. Kim and D. Ahn, Nanostructured Polydiacetylene Sensor, Polymer Science and Technology, 14, 266-273 (2003). https://doi.org/10.1002/pat.332
  2. K. S. Ha and J. S. Yuk, Nano-biotechnology and protein chip, Trends Med. Res., 11(5), 9-16 (2004).
  3. U. Kim, Biosensors, Korean J. Biotechnol. Bioeng., 15, 423-427 (2000).
  4. R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, Dip-Pen Nanolithography, Science, 283, 661-663 (1999). https://doi.org/10.1126/science.283.5402.661
  5. T. G. Drummond, M. G. Hill, and J. K. Barton, Electrochemical DNA sensors, Nature Biotechnol., 21, 1192-1199 (2003). https://doi.org/10.1038/nbt873
  6. J. W. Hong and S. R. Quake, Integrated nanoliter systems, Nature Biotechnol., 21, 1179-1183 (2003). https://doi.org/10.1038/nbt871
  7. S. Zhang, Fabrication of novel biomaterials through molecular self-assembly, Nature Biotechnol., 21, 1171-1178 (2003). https://doi.org/10.1038/nbt874
  8. J. G. Fan, D. Dyer, G. Zhang, and Y. P. Zhao, Nanocarpet Effect: Pattern Formation during the Wetting of Vertically Aligned Nanorod Arrays, Nano Lett., 4, 2133-2138 (2004). https://doi.org/10.1021/nl048776b
  9. V. Anandan, X. Yang, E. Kim, Y. Rao, and G. Zhang, Role of reaction kinetics and mass transport in glucose sensing with nanopillar array electrodes, J. Biol. Eng., 1:5, doi:10.1186/1754-1611-1-5 (2007).
  10. S. Lee, V. Anandan, and G. Zhang, Electrochemical fabrication and evaluation of highly sensitive nanorod-modified electrodes for a biotin/avidin system avidin, Biosens. Bioelectron., 23, 1117-1124 (2008). https://doi.org/10.1016/j.bios.2007.10.025
  11. V. Anandan, R. Gangadharan, and G. Zhang, Role of SAM chain length in enhancing the sensitivity of nanopillar modified electrodes for glucose detection, Sensors, 9, 1295-1305 (2009). https://doi.org/10.3390/s90301295
  12. A. Norlin, J. Pan, and C. Leygraf, Investigation of interfacial capacitance of Pt, Ti and TiN coated electrodes by electrochemical impedance spectroscopy, Biomol. Eng., 19, 67-71 (2002). https://doi.org/10.1016/S1389-0344(02)00013-8
  13. P. Zoltowski, On the electrical capacitance of interfaces exhibiting constant phase element behavior, J. Electroanal. Chem., 443, 149-154 (1998). https://doi.org/10.1016/S0022-0728(97)00490-7
  14. G. Lang and K. Heusler, Remarks on the energetics of interfaces exhibiting constant phase element behavior, J. Electroanal. Chem., 457, 257-260 (1998). https://doi.org/10.1016/S0022-0728(98)00301-5
  15. S. Ding, B. Chang, C. Wu, M. Lai, and H. Chang, Electrochemical evaluation of avidin-biotin interaction on self-assembled gold electrodes, Electrochim. Acta, 50, 3660-3666 (2005). https://doi.org/10.1016/j.electacta.2005.01.011
  16. S. Ding, B. Chang, C. Wu, M. Lai, and H. Chang, Impedance spectral studies of self-assembly of alkanethiols with different chain lengths using different immobilization strategies on Au electrodes, Anal. Chim. Acta, 554, 43-51 (2005). https://doi.org/10.1016/j.aca.2005.08.046

Cited by

  1. 젖산 연료전지용 효소전극 제작 및 특성 분석 vol.59, pp.3, 2021, https://doi.org/10.9713/kcer.2021.59.3.373