DOI QR코드

DOI QR Code

Synthesis of Tricyclopentadiene Using Ionic Liquid Supported Mesoporous Silica Catalysts

이온성 액체가 담지된 메조포로스 실리카 촉매를 이용한 Tricyclopentadiene 합성

  • Kim, Su-Jung (Division of Advanced Material Engineering, Kongju National University) ;
  • Jeon, Jong-Ki (Department of Chemical engineering, Kongju National University) ;
  • Han, Jeongsik (Agency for Defense Development) ;
  • Yim, Jin-Heong (Division of Advanced Material Engineering, Kongju National University)
  • Received : 2016.01.29
  • Accepted : 2016.02.02
  • Published : 2016.04.10

Abstract

Tricyclopentadiene (TCPD) is one of the important precursors for making tetrahydrotricyclopentadiene, which is well known as a next-generation fuel with high energy density. In this study, TCPD was obtained by polymerization reaction of dicyclopentadiene (DCPD) using an ionic liquid (IL) supported mesoporous silica catalysts. ILs were supported to two kinds of mesoporous silica catalysts with different pore sizes such as MCM-41 and SBA-15. Four different ILs were supported to mesoporous silicas using anionic precursors such as CuCl or $FeCl_3$ and cationic precursors such as triethylamine hydrochloride or 1-butyl-3-methylimidazolium chloride. We proved that IL supported mesoporous silicas showed better catalytic performance than those of using non-supported prestine IL in the aspect of TCPD yield and DCPD conversion. Among four kinds of IL supported mesoporous silica catalysts, CuCl-based IL supported MCM-41 system showed the highest TCPD yield.

Tricyclopentadiene (TCPD)는 차세대 고밀도에너지 연료인 tetrahydrotricyclopentadiene의 전구체로서 중요한 화합물이다. 본 연구에서는 이온성 액체가 담지된 메조포로스 실리카 촉매를 이용하여 dicyclopentadiene 소중합 반응을 통한 TCPD 합성에 관한 연구를 수행하였다. 나노기공의 크기가 다른 대표적인 메조포로스 실리카인 MCM-41과 SBA-15에 이온성 액체(IL)를 함침법을 이용하여 담지하고 소중합 촉매를 제조하였다. 음이온 전구체로 copper(I) chloride (CuCl) 또는 iron(III) chloride ($FeCl_3$), 양이온 전구체로 triethylamine hydrochloride (TEAC) 또는 1-butyl-3-methylimidazolium chloride(BMIC)를 사용하여 4가지 종류의 IL을 메조포로스 실리카에 담지하였다. 이온성 액체가 담지된 메조기공의 실리카를 사용하였을 때 이온성 액체만 사용하였을 때보다 TCPD 수율과 dicyclopentadiene (DCPD)의 전환율 측면에서 우수하였다. 특히, MCM-41에 루이스 산도가 낮은 CuCl계 이온성 액체를 담지할 때 TCPD 수율이 가장 높았다.

Keywords

References

  1. H. S. Chung, C. S. H. Chen, R. A. Kremer, and J. R. Boulton, Recent developments in high-energy density liquid hydrocarbon fuels, Energy Fuels, 13, 641-649 (1999). https://doi.org/10.1021/ef980195k
  2. T. Edward, Liquid Fuels and Propellants for Aerospace Propulsion: 1903-200, J. Propul. Power, 19, 1089-1107 (2003). https://doi.org/10.2514/2.6946
  3. Z. Xiong, Z. Mi, and X. Zhang, Study on the oligomerization of cyclopentadiene and dicyclopentadiene to tricyclopentadiene through Diels-Alder reaction, React. Kinet. Catal. Lett., 85, 89-97 (2005). https://doi.org/10.1007/s11144-005-0247-9
  4. I. Palmova, J. Kose, J. Schongut, M. Marek, and K. Stepanek, Experimental and modeling studies of oligomerization and copolymerization of dicyclopentadiene, Chem. Eng. Sci., 56, 927-935 (2001). https://doi.org/10.1016/S0009-2509(00)00307-9
  5. Y. Li, J.-J. Zou, X. Zhang, L. Wang, and Z. Mi, Product distribution of tricyclopentadiene from cycloaddition of dicyclopentadiene and cyclopentadiene: A theoretical and experimental study, Fuel, 89, 2522-2527 (2010). https://doi.org/10.1016/j.fuel.2009.11.020
  6. L. G. Cannell, High density fuels, US Patent 4,059,644 (1977).
  7. M. Y. Huang, J. C. Wu, F. S. Shieu, and J. J. Lin, Isomerization of exo-tetrahydrodicyclopentadiene to adamantane using an acidity-adjustable chloroaluminate ionic liquid, Catal. Commun, 10, 1747-1751 (2009). https://doi.org/10.1016/j.catcom.2009.05.030
  8. J. Kim, J.-Y. Kim, E. Park, J. Han, T. S. Kwon, Y.-K. Park, and J.-K. Jeon, Isomerization of endo-tetrahydrodicyclopentadiene over Y zeolite catalysts, Appl. Chem. Eng., 25(1), 66-71 (2014). https://doi.org/10.14478/ace.2013.1107
  9. S.-G. Kim, J. Han, J.-K. Jeon, and J.-H. Yim, Ionic liquid-catalyzed isomerization of tetrahydrotricyclopentadiene using various chloroaluminate complexes, Fuel, 137, 109-114 (2014). https://doi.org/10.1016/j.fuel.2014.07.066
  10. D. H. Kim, J.-S. Han, J.-K. Jeon, and J.-H. Yim, A study on the reaction pathway of isomerization of tetrahydrotricyclopentadiene using ionic liquid catalyst, Appl. Chem. Eng., 26(3), 366-371 (2015). https://doi.org/10.14478/ace.2015.1054
  11. J. S. Wilkes, Properties of ionic liquid solvents for catalysis, J. Mol. Catal. A: Chem., 214, 11-17 (2004). https://doi.org/10.1016/j.molcata.2003.11.029
  12. H. J. Lee, J. S. Lee, and H. S. Kim, Applications of ionic liquids: the state of arts, Appl. Chem. Eng., 21, 129-136 (2010).
  13. Y.-L. Yang and Y. Kou, Determination of the Lewis acidity of ionic liquids by means of an IR spectroscopic probe, Chem. Comm., 226-227 (2004).
  14. J. S. Beck, J. C. VartUli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, and J. L. Schlenkert, A New family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc., 114, 10834-10843 (1992). https://doi.org/10.1021/ja00053a020
  15. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, and G. D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc., 120, 6024-6036 (1998). https://doi.org/10.1021/ja974025i
  16. M. H. Valkenberg, C. deCastro, and W. F. Holderich, Immobilisation of chloroaluminate ionic liquids on silica materials, Top. Catal., 14, 139-144 (2001).
  17. C. P. Mehnert, Supported ionic liquid catalysis, Chem. Eur. J., 11, 50-59 (2005). https://doi.org/10.1002/chem.200400683
  18. M. H. Valkenberg, C. deCastro, and W. F. Holderich, Friedel-Crafts acylation of aromatics catalysed by supported ionic liquids, Appl. Catal. A., 215, 185-190 (2001). https://doi.org/10.1016/S0926-860X(01)00531-2
  19. W. Cheng, X. Chen, J. Sun, J. Wang, and S. Zhang, SBA-15 supported triazolium-based ionic liquids as highly efficient and recyclable catalysts for fixation of $CO_2$ with epoxides, Catal. Today, 200, 117-124 (2013). https://doi.org/10.1016/j.cattod.2012.10.001
  20. W. Cheng, X. Chen, J. Sun, J. Wang, and S. Zhang, SBA-15 supported triazolium-based ionic liquids as highly efficient and recyclable catalysts for fixation of $CO_2$ with epoxides, Catal. Today, 200, 117-124 (2013). https://doi.org/10.1016/j.cattod.2012.10.001
  21. M.-Y. Huang, J.-C. Wu, F.-S. Shieu, and J.-J. Lin, Isomerization of endo-tetrahydrodicyclopentadiene over clay-supported chloroaluminate ionic liquid catalysts, J. Mol. Catal. A: Chem., 315, 69-75 (2010). https://doi.org/10.1016/j.molcata.2009.09.002
  22. K.-Y. Kwak M.-S. Kim, D.-W. Lee, Y.-H. Cho, J. S. Han, T. S. Kwon, and K.-Y. Lee, Synthesis of cyclopentadiene trimer (tricyclopentadiene) over zeolites and Al-MCM-41: The effects of pore size and acidity, Fuel, 137, 230-236 (2014). https://doi.org/10.1016/j.fuel.2014.07.095

Cited by

  1. Synthesis of exo-tricyclopentadiene from endo-dicyclopentadiene over mesoporous aluminosilicate catalysts prepared from Y zeolite pp.1975-7220, 2018, https://doi.org/10.1007/s11814-018-0177-7
  2. Evaluation of a metal free dye for efficient dye sensitized solar cells based on hydrothermally synthesized TiO2 nanoflowers vol.5, pp.111, 2016, https://doi.org/10.1039/c5ra14431k