DOI QR코드

DOI QR Code

A Study on the Electrochemical Characterization of Stainless Steel in Triethanolamine Solution

트리에탄올아민용액에서 스테인리스강의 전기 화학적 특성

  • Park, Jin-Hyeog (Dept. of Chemical Engineering, Changwon National University) ;
  • Lee, Jong-Ho (Dept. of Chemical Engineering, Changwon National University) ;
  • Park, Keun-Ho (Dept. of Chemical Engineering, Changwon National University)
  • 박진혁 (창원대학교 화공시스템공학과) ;
  • 이종호 (창원대학교 화공시스템공학과) ;
  • 박근호 (창원대학교 화공시스템공학과)
  • Received : 2015.05.31
  • Accepted : 2015.06.14
  • Published : 2015.06.30

Abstract

In this study, the current-voltage curves for stainless steel in the triethanolamine(TEA) solution was measured using the conventional three electrodes of cyclic voltammetry. Stainless steel as working electrode, Ag/AgCl electrode as reference electrode and Pt wire as counter electrode were used respectively. As a result, the C-V characteristics of stainless steel were to be for an irreversible process due to the oxidation current from cyclic voltammogram, using triethanolamine solutions. Effective diffusivity of corrosion inhibitors was decreased with increasing concentration. And the concentration of 0.5 N $NaClO_4$, $2.5{\times}10^{-3}M$ TEA solution when the corrosion inhibition effect is most great, and 1.5 N $NaClO_4$, $1.0{\times}10^{-3}M$ TEA solution, the lowest corrosion inhibition effect.

본 연구에서는 스테인리스강을 사용하여 전형적인 3-전극 시스템의 순환전류전압법으로 트리 에탄올아민(TEA) 용액 중에서 전류-전압 곡선을 측정하였다. 스테인리스강은 작업 전극으로, Ag/AgCl 전극은 기준 전극으로, 그리고 백금 선은 상대 전극으로 각각 사용하였고, 그 결과, 트리에탄올아민 용액에서의 스테인리스강의 C-V 특성은 순환전류전압법으로부터 산화전류에 기인한 비가역 공정으로 나타났다. 부식억제제의 확산계수의 효과는 농도 증가에 따라 감소하였다. 그리고 부식억제 효과는 농도 0.5 N의 $NaClO_4$, $2.5{\times}10^{-3}M$ TEA용액에서 가장 컸으며, 1.5 N $NaClO_4$, $1.0{\times}10^{-3}M$ TEA용액에서 가장 낮았다.

Keywords

References

  1. K. E. Kim, B. H. Ryu, S. J. Kim, K. J. Kim, and K. M. Moon, An Electrochemical Study on the Effect of Salt Affecting to Corrosion Behavior of Concrete Reinforced Steel in Natural Sea Water, J. Kor. Soc. Oce. Eng., 14(4), 23 (2000).
  2. J. K. Chon and Y. k. Kim, Inhibition Effect of Amino Acids on the Corrosion of Aluminum in Artificial Sea Water, J. Kor. Electrochem. Soc., 12(4), 311 (2009). https://doi.org/10.5229/JKES.2009.12.4.311
  3. A. Yildirim and M. Cetin, Synthesis and evalution of new long alkyl side chainacetamide, isoxazolidine and isoxazoline derivatives as corrosion inhibitors, Corr. Sci., 50, 155 (2008). https://doi.org/10.1016/j.corsci.2007.06.015
  4. K. K. Baek and M. H. Ahn, Evalution of Combined Effect of Organic and Inorganic Inhibitors on The Metals used in Absorption Chiller System, J. Corros. Sci. Soc. Kor., 29(4), 217 (2000).
  5. D. Landolt, "Corrosion and surface Chemistry of metals", p. 204, EPFL Press, Lausanne, Switzerland (2007).
  6. E. E. Stansbury and R. A. Buchman, "Fundamentals of electrochemical corrosion", P. 63, ASM International, Ohio, U.S.A. (2004).
  7. T. C. Son, D. S. Kim, and K. H. Park, Electrochemical Properties of Langmuir-Blodgett (LB) Monolayer Films of Alkyl Bromides Mixture, J. Kor. Oil Chem. Soc., 27(2), 202 (2010).
  8. K. H. Park, Effect of Corrosion Inhibition of Metals Using Organic Compound Containing Amine Group, J. Kor. Oil Chem. Soc., 27(3), 88 (2009).
  9. D. S. Park, Study for Electrode Reaction Characteristics by Cyclic Voltammetry, Poly. Sci. Tec., 14, 356 (2003).
  10. P . T. Kissinger, Laboratory Techniques in Electroanalytical Chemistry, p.86, Marcel Dkker (1984).
  11. K. H. Park, Electrochemistry Characterization of Metal Using Corrosion Inhibitors Containing Amide Functional Group, J. Kor. Oil Chem. Soc., 28(1), 48 (2011).