• Title/Summary/Keyword: stainless steel(SUS 304)

Search Result 91, Processing Time 0.025 seconds

Brazing Property of SUS304 Stainless Steel and BNi-2 Filler Metal with Vacuum Brazing : Fundamental Study on Brazeability with Ni-Based Filler Metal(I) (진공브레이징에 의한 SUS304 스테인리스강과 BNi-2계 삽입금속의 접합특성 : Ni기 삽입금속에 의한 브레이징 접합성의 기초적 검토(I))

  • Lee, Yong-Won;Kim, Jong-Hoon
    • Korean Journal of Materials Research
    • /
    • v.17 no.3
    • /
    • pp.142-146
    • /
    • 2007
  • Vacuum brazing method has been coming to an important process as one of the new fabricating techniques of metals and alloys. In this study, a vacuum brazing of SUS304 stainless steel with BNi-2 filler metal was carried out in $1{\times}10^{4}$ Torr of vacuum atmosphere. The formation of brittle intermetallic compounds in brazed joints between SUS304 stainless steel and BNi-2 filler metal is a major concern, since they considerably degrade the mechanical properties of joints. To obtain enough stable joining strength, it is necessary to understand the unique properties of brazing process with Ni-based filler metals containing boron. So, in this research we investigated the performance of SUS304/BNi-2 brazed system and the brazed joint properties were evaluated at room temperature by using tensile test. Metallurgical and fractographic analysis were used to characterize the microstructure, the mechanisms of brazing, and joint failure modes.

Underwater Explosive Welding of Stainless Steel and Magnesium Alloy (수중 충격파를 이용한 스테인레스 스틸과 마그네슘합금의 폭발용접에 관한 연구)

  • Lee, Joon-Oh;Kim, Young-Kook;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.22 no.3
    • /
    • pp.221-225
    • /
    • 2012
  • Magnesium is one of the light weight materials, which can improve fuel economy and reduce emissions in automotive industry. Recently, magnesium alloys have gained considerable attention due to good mechanical properties. In this work, we have performed an explosive welding using the magnesium alloys (AZ31) and stainless steel (SUS 304). As a result, SUS304/AZ31 were successfully combined each other; however, a resolidified interlayer was observed at the point of welded layer. To reduce the resolidified interlayer, we have changed the thickness (0.5 mm and 1 mm) of stainless steel, distance (45 mm and 60 mm) between explosive and the center of materials and initial angle ($20^{\circ}$ and $30^{\circ}$) of explosive. In the case of the thickness 0.5 mm and angle of $30^{\circ}$, the resolidfied interlayer was not observed due to the increase of distance from the explosive. To accurately estimate the resolidified interlayer, electron probe micro-analyzer (EPMA) method and hardness were used. For the EPMA analysis, mixed materials were confirmed at the resolidified interlayer, and the measurement exhibited the middle value compared with the AZ31 and SUS304.

Pure bending creep of SUS 304 stainless steel tubes

  • Lee, Kuo-Long;Pan, Wen-Fung
    • Steel and Composite Structures
    • /
    • v.2 no.6
    • /
    • pp.461-474
    • /
    • 2002
  • This paper presents the experimental and theoretical results of SUS 304 stainless tubes with different diameter-to-thickness ratio (D/t ratio) subjected to pure bending creep. Pure bending creep occurs when a circular tube is bent to a desired moment and held at that moment for a period of time. It was found that the magnitudes of the creep curvature and ovalization of tube cross-section increase faster with a higher hold moment than that with a lower one. Due to continuously increasing curvature, the circular tubes eventually buckle. Finally, a theoretical form was proposed in this study so that it can be used to describe the relationship between the creep curvature and time. Theoretical simulations are compared with the experimental test data, showing that good agreement between the experimental and theoretical results has been achieved.

A Study on the Corrosion Behavior of Austenitic Stainless Steel in Hot Molten Salt (오스테나이트 스테인레스강의 고온용융염 부식거동연구)

  • Jo, Su-Haeng;Park, Sang-Cheol;Jeong, Myeong-Su;Jang, Jun-Seon;Sin, Yeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.9 no.2
    • /
    • pp.211-216
    • /
    • 1999
  • Corrosion behavior of austenitic stainless steels of SUS 316L and SUS304L in molten salt of LiCl and $LiCl/Li_2O$ has been investigated in the temperature range of $650~850^{\circ}C$. Corrosion products of SUS316L and 304L in hot molten salt consisted of two layers-an outer layer of Li(CrFe)$O_2$and an inner layer of$Cr_2O_3$. The corrosion layer was uniform in molten salt of LiCl, but the intergranular corrosion occurred in addition to the uniform corrosion in mixed molten salt of LiCl/$Li_2O$. The corrosion rate increased slowly with the increase of temperature up to $750^{\circ}C$, but above $750^{\circ}C$ rapid increase in corrosion rate observed. SUS316L stainless steel showed slower corrosion rate than SUS 304L, exhibiting higher corrosion resistance in the molten salt.

  • PDF

A Study on the Flank Wear of Carbide Tool in Machining SUS304 (SUS304 절삭시 Carbide 공구의 Crater 마모에 관한 연구)

  • Jeong, Jin-Yong;O, Seok-Hyeong;Kim, Jong-Taek;Seo, Nam-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.3
    • /
    • pp.44-54
    • /
    • 1991
  • A Study was made on falnk wear in carbide tools in turning SUS304 steel. When an austenitic stainless steel (SUS304 steel) is cut with the tool, saw-toothed chip are produced. It is found that machining SUS304 steel would make a tool worn fast. For increasing productivity, tool wear has to be predicted and controlled. An amended cutting geometry consisting of a negative rake angle ($-6^{\circ}$ ) and a high clearance angle ($-17^{\circ}$ ) is proposed for decreasing carbide tool wear (flank) in the machining of SUS304 steel. The amended cutting geometry is found to make the flank wear lower than a general cutting geometry (rake angle $6^{\circ}$ , clearance angle $5^{\circ}$). The effects of the three cutting variables (cutting speed, feed, tool radius) on the flank wear analyzed by fiting a simple first-order model containing interaction terms to each flank wear parameter by means of regression analysis and the predicted from first-order regression analysis model equation of flank wear.

  • PDF

A Study on the the Grindig of SUS304 with Optimum In-Process Electrolytic Dressing (최적 연속 전해드레싱을 적용한 SUS304의 연삭에 관한 연구)

  • 김정두
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.25-30
    • /
    • 1997
  • In recent years, grinding techniques for precision machining of astainless steel used in shaft, screw parts and clear value have been improved by using superabrasive wheel and precision grinding machine. The completion of optimum dressing of superabrasive wheel makes possible the effective percision grinding of stainless steel. However, the present dressing system cannot have control of optimum dressing of the superabrabive wheel. In this study, a new system and the grinding mechanism of optimum in-process electrolytic dressing were proposed. This system can carry out optimum in-process dressing of superabrasive wheel. Therefore, the optimum in-process electrolytic dressing is a good method to obtain the efficiency and mirror-like grinding of stainless steel(SUS304).

  • PDF

An Investigation of Stress Corrosion Cracking Charactistics of SUS 304 Stainless Steel in $MgCl_2$ Aqueous Solution ($MgCl_2$ 수용액 중에서 SUS 304강의 SCC 특성에 관한 연구)

  • 임우조
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.2
    • /
    • pp.133-136
    • /
    • 1984
  • The characteristics of the stress corrosion cracking of SUS 304 stainless steel were studied with the specimens of the constant displacement type under the environment of various MgCl sub(2) aqueous solutions. Main results obtained are as follows; 1) Latent time of crack initiations is delayed in the SCC under low condition of initial stress intensity K sub(Ii) value. 2) SCC occurs owing to the passive film-rupture by both load and Cl ion under MgCl sub(2) boiled aqueous solution. 3) The susceptibility of SCC can be largely improved by reducing the temperature in case of the high concentration of MgCl sub(2) aqueous solution.

  • PDF

A study on the vacuum brazing of carbon steels to a stainless steel (탄소강과 스테인리스강의 진공브레이징에 관한 연구)

  • 이창동;나석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1083-1091
    • /
    • 1988
  • Vacuum brazing is the most modern brazing process and is at present, far from being completely understood. By brazing under high vacuum, in an atmosphere free of oxidizing gases, a superior product with greater strength, ductility and uniformity can be obtained. In this study, the influence of brazing parameters such as base metal characteristics, joint clearance and brazing time were described in relation to the metallurgical phenomena and shear strength of vacuum-brazed joints between carbon steels and 304 stainless steel (SUS 304) brazed by copper filler metal. In copper brazing of SUS 304 to a medium carbon steel(M.C.S) the columnar Fe-Cr-Ni-Cu-C alloy structure was formed and grew from the M.C.S side and at the same time, the surface of M.C.S. was decarbonized. The driving force for the formation and growth of columnar structure was the difference of carbon content between base metals. As the joint clearance is narrower and brazing time is longer, the formation and growth of columnar phase and decarburization of carbon steels were more noticeable. Because of decarburization of carbon steels, the shear strength of brazed joints were reduced as the formation of columnar structure was increased.

ButWelding Characteristics of SM45C and SUS 304 using a Nd:YAG laser (SM45C와 SUS304의 Nd:YAG 레이저 맞대기용접특성)

  • Yoo, Young-Tae;Ro, Kyoung-Bo;Shin, Ho-Jun;Kim, Ji-Hwan;Oh, Young-Seok
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1302-1308
    • /
    • 2003
  • Welding characteristics of austienite 304 stainless steel and SM45C using a continuous wave Nd:YAG laser are experimentally investigated. Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. This paper describes the weld ability of SM45C carbon steel and austienite 304 stainless steel for machine structural use by Nd:YAG laser.

  • PDF