DOI QR코드

DOI QR Code

Liquefation Characteristics of Polypropylene by Low-Temperature Pyrolysis by using Co and Mo Dispersed Catalysts under time and loading variations

Co 및 Mo 분산촉매 반응시간과 농도 변화에 따른 PP의 저온열분해 액화특성

  • Park, Jun-Gyu (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority) ;
  • Lee, Bong-Hee (Dept. of Chemical Engineering, Chungbuk National University)
  • 박준규 (한국석유관리원 석유기술연구소) ;
  • 이봉희 (충북대학교 공과대학 화학공학과)
  • Received : 2015.05.31
  • Accepted : 2015.06.14
  • Published : 2015.06.30

Abstract

This study investigated the conversion of oil products from polypropylene by using dispersed Co and Mo catalyst on reaction time and concentration change for knowledging liquefation characteristics at low-temperature (425, 450 and $475^{\circ}C$) pyrolysis in a batch reactor. The reaction time was set in 20~80 minutes and the oil products formed during pyrolysis were classfied into gas, gasoline, kero, diesel and heavy oil according to the domestic specification of petroleum products. The pyrolysis conversion rate was showed as Mo catalyst > Co catalyst > Thermal in all reaction time at reaction temperature $450^{\circ}C$. The conversion rate and yields of the pyrolysis products were the most height when Co and Mo Catalyst ratio was 50:50.

본 연구는 폴리프로필렌(PP) 수지의 Co 및 Mo 촉매에 의한 반응시간과 농도변화에 따른 저온열분해 액화특성을 파악하고자 회분식 반응기를 이용하여 특정 온도(425, 450, $475^{\circ}C$)에서의 전환율을 측정하였다. 열분해 시간은 20~80분으로 설정하였고 생성물은 산업통상자원부에서 고시한 증류성상 온도에 따라 가스, 가솔린, 등유, 경유, 중유로 분류하였다. 그리고 $450^{\circ}C$ 반응온도에서 촉매 사용에 따른 전환율은 모든 반응시간에 있어 Mo 촉매 > Co 촉매 > 무촉매 순이었다. Co 및 Mo 촉매 농도별 PP 전환율 및 열분해 생성물 수율은 Co:Mo=50:50 혼합시 가장 우수한 것으로 나타났다.

Keywords

References

  1. IEA, 2009, "World Energy Outlook", International Energy Agency, OECD/Paris.
  2. J. -K. Kim, C. H. Jeon, E. S. Yim, C. S. Jung, S. B. Lee, Y. J. Lee and M. J. Kang, A study on fuel quality characteristics of F-T diesel for production of BTL diesel, J. of the Korean Oil Chemists' Soc., 29, 450 (2012).
  3. Hart's Global Biofuel Center, 2010, "Global Biofuels Outlook 2010-2020", Houston, USA.
  4. J. -K. Kim, E. S. Yim, C-. S. Jung, Study on comparison of global biofuels mandates policy in transport sector, New & Renewable Energy, 7, 18 (2011).
  5. www.me.go.kr, The status of generation and treatment of waste in Korea, Ministry of Environment (2013).
  6. M. V. S. Murty, E, A. Grulke, and D. Bh attacharyya, Influence of metallic addictives on thermal degradation and liquefaction of high density polyethylene (HDPE), Polym. Degrad. Stail., 61, 421 (1998). https://doi.org/10.1016/S0141-3910(97)00228-0
  7. Nho, N., Shin, D., Park, S., Lee, K., Kim, K., Jeon, S. and Cho, B. Process Development of Pyrolysis Liqefaction for Waste Plastics, New & Renewable Energy, 2(2), 118-124 (2006).
  8. Kodera, Y. and McCoy, B. J., "Distribtion Kinetics of Plastics Decomposition," J. Jpn. Petrol. Inst., 46, 155-165 (2003). https://doi.org/10.1627/jpi.46.155
  9. Consa, J. A., Front, R., Marcilla, A., and Garcia, A. N., Porolysis of polyethylene in fluidized Bed Reactor, Energ. Fuel 8(6), 1238-1246 (1994). https://doi.org/10.1021/ef00048a012
  10. Choi, H. J., Jeong, S. M. and Lee, B. H. , Study on the liquefaction characteristics of ABS resin in a low-temperature pyrolysis, Korean Chem. Eng. Res., 49(4) 417-422 (2011). https://doi.org/10.9713/kcer.2011.49.4.417
  11. Williams, P. t., Waste treatment and disposal, Willy, Chichester, 1998.
  12. Bertoline, G. E., and Fontain, J., Value recovery from plastics waste by pyrolysis in molten salts, Conservation and Recycling, 10. 311-343 (1987).
  13. Kaminsky, W., Bark, A., and Arndt, M., New polymer by homogeneous zirconocene /alumioxane catalysts, Markomol. Chem., Markmol. Symp., 47, 83-93 (1991).
  14. Cho, S. H., Jeong, S. M. and Lee, B. H., Low Temperature Pyrolysis of Polypropylene by Using Co and Mo Dispersed Catalysts, Jurnal of Industrial Science and Technology Institute, 27(2), 65-69 (2013).
  15. Karagoz, S., Karayildirim, T. Ucar, S, Yuksel, M., and Yanik J., Lifuefaction of municipal waste plastics in VGO over acidic and non-acidic actalyst, Fuel, 82, 415-423 (2003). https://doi.org/10.1016/S0016-2361(02)00250-8
  16. http://www.kpetro.or.kr/sub.jsp?MenuID=m2as401_01
  17. Pinto, F., Costa, P., Gulyurtlu, I., and Cabrita, I., Pyrolysis of plastic waste; 2. Effect of catalyst on product yield, J. Anal. Appl. Pyrolysis, 51, 57-71 (1999). https://doi.org/10.1016/S0165-2370(99)00008-X
  18. Y. Iwata, K. Sato, R. Yoneda, Y. Miki, Y. Sugimoto, A. Nishijima, H. Shimada, Catalytic functionality of unsupported molybdenum sulfide catalysts prepared with different methods, Catal, 45;353-359 (1998).
  19. McNeill, I. C., Thermal Degradation, Pergamon Press, Oxford, 55-79 (1989).