DOI QR코드

DOI QR Code

A Novel Structure for the Improved Switching Time of 50V Class Vertical Power MOSFET

  • Cho, Doohyung (Dept. of Electronics Engineering, Sogang University) ;
  • Park, Kunsik (Convergence Component & Materials Research Laboratory, Electonics and Telecommunications Research Institute (ETRI)) ;
  • Kim, Kwangsoo (Dept. of Electronics Engineering, Sogang University)
  • Received : 2015.01.12
  • Accepted : 2015.03.24
  • Published : 2015.03.31

Abstract

In this paper, a novel trench power MOSFET using a Separate-W-gated technique MOSFET (SWFET) is proposed. Because the SWFET has a very low $Q_{GD}$ compared to other forms of technology, it can be applied to high-speed power systems. The results found that the SWFET-applied $Q_{GD}$ was decreased by 40% when compared to simply using the more conventional trench gate MOSFET. $C_{ISS}$ (input capacitance : $C_{GS}+C_{GD}$), $C_{OSS}$ (output capacitance : $C_{GD}+C_{DS}$) and $C_{RSS}$ (reverse recovery capacitance : $C_{GD}$) were improved by 24%, 40%, and 50%, respectively. The switching characteristics of the inverter circuit shows a 24.9% enhancement of reverse recovery time, and the power efficiency of the DC-DC buck converter increased by 14.2%. In addition, the proposed SWFET does not require additional process steps and There was no degradation in the electrical performance of the current-voltage and on-resistance.

Keywords

References

  1. B. J. Baliga, "An overview of smart power technology," IEEE Trans. Electron Devices, vol. 38, no. 7, pp. 1568-1575, Jul. 1991. https://doi.org/10.1109/16.85151
  2. A. Gagliardi, "Planning Of Power Systems and Green Power Market," Power Tech Conference Proceedings, IEEE Bologna vol. 1, June. 2003.
  3. L. Lorenz, "Power Semiconductor Driving Technology for High Power Green Electronic Systems," VLSI Design, Automation, and Test (VLSI-DAT), 2012 International Symposium on, pp. 1-2, April. 2012.
  4. R. P. Zingg, "On the specific on-resistance of high-voltage and power devices," IEEE Trans. Electron Devices, vol. 51, no. 3, pp. 492-499, Mar. 2004. https://doi.org/10.1109/TED.2003.822948
  5. R. J. E. Hueting, E. A. Hijzen, A.W. Ludikhuize, and M. A. A. in't Zandt, "Switching performance of low-voltage n-channel trench MOSFETs," in Proc. ISPSD, 2002, pp. 177-180.
  6. R. J. E. Hueting, E. A. Hijzen, A. Heringa, A. W. Ludikhuize, and M. A. A. Zandt, "Gate-drain charge analysis for switching in power trench MOSFETs," IEEE Trans. Electron Devices, vol. 51, no. 8, pp. 1323-1330, Aug. 2004. https://doi.org/10.1109/TED.2004.832096
  7. M. Darwish, C. Yue, K. H. Lui, F. Giles, B. Chan, K.-I. Chen, D. Pattanayak, Q. Chen, K. Terrill, and K. Owyang, "W-gated trench power MOSFET (WFET)," Proc. Inst. Elect. Eng.-Circuits Devices Syst., vol. 151, no. 3, pp. 238-242, Jun. 2004. https://doi.org/10.1049/ip-cds:20040445
  8. M. Darwish, C. Yue, K. H. Lui, F. Giles, B. Chan, K. Chen, D. Pattanayak, Q. Chen, K. Terrill, and K. Owyang, "A new power W-gated trench MOSFET (WMOSFET) with high switching performance," in Proc. ISPSD, Cambridge, U.K., pp. 24-27. Apr. 14-17, 2003.
  9. Atlas User's Manual: Device Simulation Software, Silvaco Int., Santa Clara, CA, 2008.
  10. H.-R. Chang, Trench gate structure with thick bottom oxide, U.S. Patent 4 992 390, Feb. 12, 1991.
  11. Q. Jiang, M. Wang, Chen, "A High-Speed Deep-Trench MOSFET With a Self-Biased Split Gate" IEEE Trans. Electron Devices, vol. 57, no. 8, pp. 1972-1977. 7 Aug. 2010. https://doi.org/10.1109/TED.2010.2051247
  12. D.H. Cho and K. S. Kim "Trench Power MOSFET using Separate Gate Technique for Reducing Gate Charge" Journal of IKEEE, Vol. 16 pp. 283-289, December 2012. https://doi.org/10.7471/ikeee.2012.16.4.283
  13. K. S. Nam, J. W. Lee, S. G. Kim, T. M. Roh, H. S. Park, J. G. Koo, and K. I. Cho, "A novel simplified process for fabricating a very high density P-channel trench gate power MOSFET," IEEE Electron Device Lett., vol. 21, no. 7, pp. 365-367, Jul. 2000. https://doi.org/10.1109/55.847382
  14. M. H. Juang, W. T. Chen, C. I. Ou-Yang, S. L. Jang, M. J. Lin, and H. C. Cheng, "Fabrication of trench-gate power MOSFETs by using a dual doped body region," Solid State Electron., vol. 48, no. 7, pp. 1079-1085, Jul. 2004. https://doi.org/10.1016/j.sse.2003.07.007
  15. B. J. Baliga, Modern Power Devices, 2nd ed. New York: Wiley, 1992.
  16. B. J. Baliga, Fundamentals of Power Semiconductor Devices, New York, Springer, 2008.
  17. C. K. Ong, "A mathematical model for power MOSFET capacitances" Power Electronics Specialists Conference, 1991. PESC '91 Record, 22nd Annual IEEE pp. 423-429 Jun. 1991.
  18. Y. Xiong, S. Sun, H. Jia, P. Shea, and Z.J. Shen, "New Physical insight on power MOSFET switching losses," Power Electronics, IEEE Transactions on, vol. 24, no. 2, pp. 525-531, Feb. 2009. https://doi.org/10.1109/TPEL.2008.2006567
  19. C. Cavallaro, S. Musumeci, R. Pagano, A. Raciti, and K. Shenai, "Analysis modeling and simulation of low-voltage MOSFETs in synchronous-rectifier buck-converter applications," Industrial Electronics Society, 2003. IECON '03. The 29th Annual Conference of the IEEE, vol. 2, pp. 1697-1702, Nov. 2003.
  20. Schmidt and Wolfgang "DCDC Converter for Hybrid Vehicle Applications," Integrated Power Systems (CIPS), 2008 5th International Conference on, pp. 1-3, Mar. 2008.
  21. P. Ralston Design and Verification of a High Voltage, Capacitance Voltage Measurement System for Power MOSFETs master dissertation, Blacksburg, VA, 2008

Cited by

  1. The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, and Reliability vol.64, pp.3, 2017, https://doi.org/10.1109/TED.2017.2655149