DOI QR코드

DOI QR Code

A Study on the Charge Controller for Solar Street Lamp by Direct Duty Ratio Control

다이렉트 듀티비 제어에 의한 태양광 가로등용 충전제어기에 관한 연구

  • Jang, Han-Gi (Department of Digital Management Information, Nambu University) ;
  • Lim, Jung-Yeol (Department of Digital Management Information, Nambu University)
  • Received : 2015.03.18
  • Accepted : 2015.03.30
  • Published : 2015.03.31

Abstract

According to the recent report, solar street lamp connected to a non Maximum Power Point Tracking(MPPT) charger, can lead to a system-wide decline in power output with as much as 30%. This paper proposes the charge controller with direct duty ration control for 250W solar street lamp in order to improve the efficiency of photovoltaic from these output power reduction. This paper covers the Pulse Width Modulation(PWM) controller and power conversion topology and analyze the MPPT method for charge controller. The power conversion part consists of push pull converter based on PWM controller using 8bit MCU in order to have lower manufacturing cost. The PWM controller with direct duty ratio control algorithm is constantly tracking the maximum power point of photovoltaic module and increases energy output power. The test results shows 97.1~97.4% MPPT efficiency and the experimental hardware is implemented based on the solar simulator condition for 241W. Thus, the implemented charge controller shows its feasibility for the real application, especially under solar street lamp.

MPPT가 미적용된 기존 태양광 가로등은 최대 30%의 출력저하를 유발한다고 보고되고 있다. 본 논문에서는 이러한 출력 저하로부터 태양광발전시스템의 효율을 향상시키기 위해 다이렉트 듀티비 제어 알고리즘을 적용한 250W 태양광가로등을 위한 충전제어기를 제안하였으며, PWM 제어기와 전력 토폴로지를 다루고, MPPT 알고리즘을 분석하였다. 전력변환부는 푸쉬풀 강압 컨버터로 구성하고, PWM 제어기는 8비트 MCU를 기반으로 해서 제조 원가를 낮추도록 하였다. 다이렉트 듀티비 제어 알고리즘을 적용한 PWM 제어기는 태양광모듈의 최대전력점을 지속적으로 추적하여 출력 전력을 증가시킨다. 실험 결과, 241W 태양광시뮬레이터 환경에서 97.1~97.4%의 MPPT 효율을 나타내었으며, 실제 응용제품에 적용할 수 있을 것으로 예상된다.

Keywords

References

  1. IEA PVPS, Trends in Photovoltaic applications, IEA, Report IEA-PVPS, 2006
  2. B. K. Bose etal(1985). "Microcomputer control of a residential photovoltaic power conditioning system." IEEE Trans. On Industry Application. IA-215.
  3. V. Salas, E. Olias, A. Barrado, and A. Lazaro, "Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems," Solar Energy Mater. Solar Cells, vol. 90, pp. 1555-1578, 2006. https://doi.org/10.1016/j.solmat.2005.10.023
  4. Hajime Kawamura, etc. "Simulation of I-V characteristics of a PV module with shaded PV cells." Solar Energy Materials & Solar Cells. 2003.
  5. R. Chenni, M. Makhlouf, T. Kerbache and A. Bouzidura, "A detailed modeling method of photovoltaic cells, energy, Vol. 32, pp.1724-1730, 2007 https://doi.org/10.1016/j.energy.2006.12.006
  6. R. Leandro and I. Barbi, "A Three-Phase Current-Fed Push-Pull DC-DC Converter", IEEE Trans. on Power Electronics, Vol. 24, Issue 2, pp. 358-368,2009, Feb. https://doi.org/10.1109/TPEL.2008.2007727
  7. N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, "Optimization of perturb and observe maximum power point tracking method," IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963-973, Jul. 2005. https://doi.org/10.1109/TPEL.2005.850975