• Title/Summary/Keyword: DC-DC buck converter

Search Result 388, Processing Time 0.027 seconds

Response Characteristics Of DC-DC Buck Converter Analysis and Research (DC-DC Buck Converter의 응답특성 해석 및 연구)

  • Lee, Kyung-Hoan;Kim, Jin-Deok
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.28-29
    • /
    • 2013
  • DC-DC Buck Converter는 입력 전압보다 출력전압이 낮은 컨버터이며 강압형 컨버터라고도 한다. 입력과 출력이 같은 접지를 공유하는 회로에 쓰이며, 스위칭 소자를 이용하여 듀티비에 따라 출력전압을 제어할 수 있고, 출력단의 LC 필터를 통해 평활(평균)하여 직류전압을 얻을 수 있다. DC-DC Buck Converter는 제어가 간단하고 설계가 쉬워 주로 회로의 파워부에 많이 쓰이고 있으며, 본 논문에서는 DC-DC Buck Converter의 기본형과 2Stage DC-DC Buck Converter 그리고 기본형의 GND단에 L을 추가한 DC-DC Buck Converter의 응답특성을 비교 및 분석을 함으로써 이론적 해석과 시뮬레이션을 통한 특성을 비교 하고자 한다.

  • PDF

Buck and Half Bridge Series DC-DC Converter (강압형과 하프 브리지 직렬형 DC-DC 컨버터)

  • Kim Chang-Sun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.616-621
    • /
    • 2005
  • We considered of the buck and half bridge series DC-DC converter. It has good applications in areas with low voltage/high current, wide input voltage. The buck converter ratings and the half bridge converter ratings are $36\~72V$ input and 22V/5A output, $19\~24V$ input and 3.3V/30A output, respectively. Developed the buck and half Bridge series DC-DC converter ratings are of $36\~72V$ input and 3.3V/30A output. The buck converter is operated with zero voltage switching process to reduce the switching losses. The $80.1\%\~97.6\%$ of the efficiency is measured at $18.4{\mu}H$ output filter inductance of buck converter. In the half bridge converter, the $86\%\~96.4\%$ efficiency is measured at 150kHz switching frequency with PQI core. In the case of synchronized the buck and half bridge DC-DC converter, the measured efficiency is higher than that of the unsynchronized converter. In the synchronized converter, the maximum efficiency is measured up to $92.3\%$ with PQI core at 150kHz. 7A output.

Investigation and Circuit Analysis for DC-DC Converter (DC-DC Converter 특성검토 및 회로해석)

  • Hwang, Su-Seol;Lee, Jae-Deuk
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.166-173
    • /
    • 2006
  • A DC-DC converter is a device that accepts a DC input voltage and produces a DC output voltage. Typically the output produced is at a different voltage level than the input. In addition, DC-DC converters are used to provide noise isolation, power bus regulation, etc. In this paper, it reviews some kinds of the popular DC-DC converter topolopgies and performs simulation selected basic type of DC-DC Converter.(Buck-type Converter)

  • PDF

Design of DC-DC Buck Converter Using Micro-processor Control (마이크로프로세서 제어를 이용한 DC-DC Buck Converter 설계)

  • Jang, In-Hyeok;Han, Ji-Hun;Lim, Hong-Woo
    • Journal of Advanced Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.349-353
    • /
    • 2012
  • Recently, Mobile multimedia equipments as smart phone and tablet pc requirement is increasing and this market is also being expanded. These mobile equipments require large multi-media function, so more power consumption is required. For these reasons, the needs of power management IC as switching type dc-dc converter and linear regulator have increased. DC-DC buck converter become more important in power management IC because the operating voltage of VLSI system is very low comparing to lithium-ion battery voltage. There are many people to be concerned about digital DC-DC converter without using external passive device recently. Digital controlled DC-DC converter is essential in mobile application to various external circumstance. This paper proposes the DC-DC Buck Converter using the AVR RISC 8-bit micro-processor control. The designed converter receives the input DC 18-30 [V] and the output voltage of DC-DC Converter changes by the feedback circuit using the A/D conversion function. Duty ratio is adjusted to maintain a constant output voltage 12 [V]. Proposed converter using the micro-processor control was compared to a typical boost converter. As a result, the current loss in the proposed converter was reduced about 10.7%. Input voltage and output voltage can be displayed on the LCD display to see the status of the operation.

Self-Excited Buck-Boost DC-DC Converter (자려식 승강압형 DC-DC 컨버터)

  • Lee, Seong-Gil;An, Tae-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.663-669
    • /
    • 1999
  • This paper presents new self excited DC-DC converters such as Buck-boost type, Buck type and also non-inverting Buck-boost type. The proposed converters has the following advantages: simple topology, small number of circuit components, easy control method. Therefore, these converters are suitable for the portable appliances with battery source. It is especially suited for low power DC-DC conversion applications where non isolation output power is usually required. The steady state characteristics of proposed self exciting Buck-boost DC-DC converter are analysis and the result shows good agreement with experimental value. Furthermore the experimental results for 50W class self oscillating Buck-boost DC-DC converter have been obtained, which demonstrate the high efficiency and good performance.

  • PDF

Research of DC-DC Converter for Ocean Buoy (해상용 브이에 적합한 DC-DC 컨버터 연구)

  • Oh, Jin-Seok
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.839-844
    • /
    • 2007
  • This paper describes the performance of DC-DC converters for buoy such as buck, boost, and buck-boost. The operating characteristic and charging efficiency with battery, which has a considerable properties about converters with PV(photovoltaic) system, is analyzed in this paper. It is performed by using the MPPT(Maximum Power Point Tracker) algorithm The basic equations of switching operation for converter are described, and the equations are analyzed with according to switch state. Whereas this analysis is directed toward the selection of converter for buoy, it also provides the insight into the behaviour of converter and performance of the proposed algorithm Finally, the suitable DC-DC converter is proposed for buoy, and the characteristic experiment is performed with the buck converter.

Dynamic Characteristics of DC-DC Converters Using Digital Filters

  • Kurokawa, Fujio;Okamatsu, Masashi;Ishibashi, Taku;Nishida, Yasuyuki
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.430-437
    • /
    • 2009
  • This paper presents the dynamic characteristics of buck and buck-boost dc-dc converters with digital filters. At first, the PID, the minimum phase FIR filter and the IIR filter controls are discussed in the buck dc-dc converter. Comparisons of the dynamic characteristics between the buck and buck-boost converters are then discussed. As a result, it is clarified that the superior dynamic characteristics are realized in the IIR filter method. In the buck converter, the undershoot is less than 2% and the transient time is less than 0.4ms. On the other hand, in the buck-boost converter, the undershoot is about 3%. However, the transient time is approximately over 4ms because the output capacitance is too large to suppress the output voltage ripple in this type of converter.

A CMOS Hysteretic DC-DC Buck Converter with a Constant Switching Frequency

  • Jeong, Taejin;Yoon, Kwang S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.4
    • /
    • pp.471-476
    • /
    • 2015
  • This paper describes a CMOS hysteretic DC-DC buck converter with a constant switching frequency for mobile applications. The inherent problems of a large output ripple voltage that the conventional hysteretic DC-DC buck converters has faced have been resolved by using the proposed DC-DC buck converter which employed a ramp generator circuit to be able to increase a switching frequency. The proposed architecture enables the settling response time of charge pump circuit within the converter to become less than 6us suitable for mobile applications. The proposed DC-DC buck converter was implemented by using 0.35 um BCDMOS process and die size was $1.37mm{\times}1.37mm$. The measurement results showed that the proposed circuit received the input of 3.7 V and generated output of 1.2 V with the output ripple voltages less than 20 mV under load currents of 100~400 mA at the fixed switching frequency of 2 MHz. The maximum efficiency of the proposed hysteretic buck converter was measured to be around 93%.

Bi-directional Buck-Boost DC-DC Converter for Bus Voltage Regulation (Bus 전압 레귤레이션을 위한 쌍방향 Buck-Boost DC-DC컨버터)

  • Ko, Tae-Ill;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.348-350
    • /
    • 1994
  • In this paper, bi-directional buck-boost DC-DC converter for bus regulation system is presented. This converter which has one buck and one boost topology achieves bi-directional power flow using a common power inductor and alternative power switches. By connecting the battery to bus line, it can be regulated to bus voltage and charged the battery alternatively. And as an application, a mode controller is adopted to the converter.

  • PDF

Multi-Band RF Energy Harvesting System Using Buck-Boost DC-DC Converter (Buck-Boost DC-DC Converter를 이용한 다중 대역 RF 에너지 수집 시스템)

  • Cho, Choon Sik
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.2
    • /
    • pp.89-93
    • /
    • 2017
  • This paper introduces an energy harvesting system that generates energy by collecting multi-band RF signals using buck-boost DC-DC converter. In an environment where the resistance of load using the collected electric energy is constantly changing, a buck-boost DC-DC converter is used in which the input resistance of the DC-DC converter does not change even if the load resistance changes. Since the frequency band of the input RF signal varies, the rectifier is designed for each band so that multiple bands can be processed, and a matching circuit is added to each band in front of the rectifier. For a rectifier to collect very small RF signals, a circuit is designed so that a constant voltage is obtained according to a very small input signal by devising a method of continuously accumulating the voltages collected and generated in each band. It is confirmed that the output efficiency can reach up to 20% even for the RF signal having the input of -20 dBm.