• Title/Summary/Keyword: gate charge

Search Result 340, Processing Time 0.038 seconds

A Study on Characteristics of Wet Gate Oxide and Nitride Oxide(NO) Device (Wet 게이트 산화막과 Nitride 산화막 소자의 특성에 관한 연구)

  • 이용희;최영규;류기한;이천희
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.970-973
    • /
    • 1999
  • When the size of the device is decreased, the hot carrier degradation presents a severe problem for long-term device reliability. In this paper we fabricated & tested the 0.26${\mu}{\textrm}{m}$ NMOSFET with wet gate oxide and nitride oxide gate to compare that the characteristics of hot carrier effect, charge to breakdown, transistor Id_Vg curve and charge trapping using the Hp4145 device tester As a result we find that the characteristics of nitride oxide gate device better than wet gate oxide device, especially a hot carrier lifetime(nitride oxide gate device satisfied 30years, but the lifetime of wet gate oxide was only 0.1year), variation of Vg, charge to breakdown and charge trapping etc.

  • PDF

Trench Power MOSFET using Separate Gate Technique for Reducing Gate Charge (Gate 전하를 감소시키기 위해 Separate Gate Technique을 이용한 Trench Power MOSFET)

  • Cho, Doohyung;Kim, Kwangsoo
    • Journal of IKEEE
    • /
    • v.16 no.4
    • /
    • pp.283-289
    • /
    • 2012
  • In this paper, We proposed Separate Gate Technique(SGT) to improve the switching characteristics of Trench power MOSFET. Low gate-to-drain 전하 (Miller 전하 : Qgd) has to be achieved to improve the switching characteristics of Trench power MOSFET. A thin poly-silicon deposition is processed to form side wall which is used as gate and thus, it has thinner gate compared to the gate of conventional Trench MOSFET. The reduction of the overlapped area between the gate and the drain decreases the overlapped charge, and the performance of the proposed device is compared to the conventional Trench MOSFET using Silvaco T-CAD. Ciss(input capacitance : Cgs+Cgd), Coss(output capacitance : Cgd+Cds) and Crss(reverse recovery capacitance : Cgd) are reduced to 14.3%, 23% and 30% respectively. To confirm the reduction effect of capacitance, the characteristics of inverter circuit is comprised. Consequently, the reverse recovery time is reduced by 28%. The proposed device can be fabricated with convetional processes without any electrical property degradation compare to conventional device.

A Study on Characteristics of Wet Oxide Gate and Nitride Oxide Gate for Fabrication of NMOSFET (NMOSFET의 제조를 위한 습식산화막과 질화산화막 특성에 관한 연구)

  • Kim, Hwan-Seog;Yi, Cheon-Hee
    • The KIPS Transactions:PartA
    • /
    • v.15A no.4
    • /
    • pp.211-216
    • /
    • 2008
  • In this paper we fabricated and measured the $0.26{\mu}m$ NMOSFET with wet gate oxide and nitride oxide gate to compare that the charateristics of hot carrier effect, charge to breakdown, transistor Id_Vg curve, charge trapping, and SILC(Stress Induced Leakage Current) using the HP4145 device tester. As a result we find that the characteristics of nitride oxide gate device better than wet gate oxide device, especially hot carrier lifetime(nitride oxide gate device satisfied 30 years, but the lifetime of wet gate oxide was only 0.1 year), variation of Vg, charge to breakdown, electric field simulation and charge trapping etc.

Quantum modulation of the channel charge and distributed capacitance of double gated nanosize FETs

  • Gasparyan, Ferdinand V.;Aroutiounian, Vladimir M.
    • Advances in nano research
    • /
    • v.3 no.1
    • /
    • pp.49-54
    • /
    • 2015
  • The structure represents symmetrical metal electrode (gate 1) - front $SiO_2$ layer - n-Si nanowire FET - buried $SiO_2$ layer - metal electrode (gate 2). At the symmetrical gate voltages high conductive regions near the gate 1 - front $SiO_2$ and gate 2 - buried $SiO_2$ interfaces correspondingly, and low conductive region in the central region of the NW are formed. Possibilities of applications of nanosize FETs at the deep inversion and depletion as a distributed capacitance are demonstrated. Capacity density is an order to ${\sim}{\mu}F/cm^2$. The charge density, it distribution and capacity value in the nanowire can be controlled by a small changes in the gate voltages. at the non-symmetrical gate voltages high conductive regions will move to corresponding interfaces and low conductive region will modulate non-symmetrically. In this case source-drain current of the FET will redistributed and change current way. This gives opportunity to investigate surface and bulk transport processes in the nanosize inversion channel.

Measurement of Interface Trapped Charge Densities $(D_{it})$ in 6H-SiC MOS Capacitors

  • Lee Jang Hee;Na Keeyeol;Kim Kwang-Ho;Lee Hyung Gyoo;Kim Yeong-Seuk
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.343-347
    • /
    • 2004
  • High oxidation temperature of SiC shows a tendency of carbide formation at the interface which results in poor MOSFET transfer characteristics. Thus we developed oxidation processes in order to get low interface charge densities. N-type 6H-SiC MOS capacitors were fabricated by different oxidation processes: dry, wet, and dry­reoxidation. Gate oxidation and Ar anneal temperature was $1150^{\circ}C.$ Ar annealing was performed after gate oxidation for 30 minutes. Dry-reoxidation condition was $950^{\circ}C,$ H2O ambient for 2 hours. Gate oxide thickness of dry, wet and dry-reoxidation samples were 38.0 nm, 38.7 nm, 38.5 nm, respectively. Mo was adopted for gate electrode. To investigate quality of these gate oxide films, high frequency C- V measurement, gate oxide leakage current, and interface trapped charge densities (Dit) were measured. The interface trapped charge densities (Dit) measured by conductance method was about $4\times10^{10}[cm^{-1}eV^{-1}]$ for dry and wet oxidation, the lowest ever reported, and $1\times10^{11}[cm^{-1}eV^{-1}]$ for dry-reoxidation

  • PDF

A Highly Power-Efficient Single-Inductor Multiple-Outputs (SIMO) DC-DC Converter with Gate Charge Sharing Method

  • Nam, Ki-Soo;Seo, Whan-Seok;Ahn, Hyun-A;Jung, Young-Ho;Hong, Seong-Kwan;Kwon, Oh-Kyong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.549-556
    • /
    • 2014
  • This paper proposes a highly power-efficient single-inductor multiple-outputs (SIMO) DC-DC converter with a gate charge sharing method in which gate charges of output switches are shared to improve the power efficiency and to reduce the switching power loss. The proposed converter was fabricated by using a $0.18{\mu}m$ CMOS process technology with high voltage devices of 5 V. The input voltage range of the converter is from 2.8 V to 4.2 V, which is based on a single cell lithium-ion battery, and the output voltages are 1.0 V, 1.2 V, 1.8 V, 2.5 V, and 3.3 V. Using the proposed gate charge sharing method, the maximum power efficiency is measured to be 87.2% at the total output current of 450 mA. The measured power efficiency improved by 2.1% compared with that of the SIMO DC-DC converter without the proposed gate charge sharing method.

A Study on Breakdown Voltage of GaAs Power MESFET's (GaAs Power MESFET의 항복전압에 관한 연구)

  • 김한수;김한구;박장우;기현철;박광민;손상희;곽계달
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.7
    • /
    • pp.1033-1041
    • /
    • 1990
  • In this paper, under pinch-off conditions, the gate-drain breakdown voltage characteristics of GaAs Power MESFET's as a function of device parameters such as channel thickness, doping concentration, gate length etc. are analyzed. Using the Green's function, the gate ionic charge induced by the depleted channel ionic charge is calculated. The impact ionization integral by avalanche multiplication between gate and drain is used to investigate breakdown phenomena. Especially, the localized excess surface charge effect as well as the uniform surface charge effect on breakdown voltage is considered.

  • PDF

A Compact Quantum Model for Cylindrical Surrounding Gate MOSFETs using High-k Dielectrics

  • Vimala, P.;Balamurugan, N.B.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.649-654
    • /
    • 2014
  • In this paper, an analytical model for Surrounding Gate (SG) metal-oxide- semiconductor field effect transistors (MOSFETs) considering quantum effects is presented. To achieve this goal, we have used variational approach for solving the Poission and Schrodinger equations. This model is developed to provide an analytical expression for inversion charge distribution function for all regions of device operation. This expression is used to calculate the other important parameters like inversion charge density, threshold voltage, drain current and gate capacitance. The calculated expressions for the above parameters are simple and accurate. This paper also focuses on the gate tunneling issue associated with high dielectric constant. The validity of this model was checked for the devices with different dimensions and bias voltages. The calculated results are compared with the simulation results and they show good agreement.

Gate All Around Metal Oxide Field Transistor: Surface Potential Calculation Method including Doping and Interface Trap Charge and the Effect of Interface Trap Charge on Subthreshold Slope

  • Najam, Faraz;Kim, Sangsig;Yu, Yun Seop
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.5
    • /
    • pp.530-537
    • /
    • 2013
  • An explicit surface potential calculation method of gate-all-around MOSFET (GAAMOSFET) devices which takes into account both interface trap charge and varying doping levels is presented. The results of the method are extensively verified by numerical simulation. Results from the model are used to find qualitative and quantitative effect of interface trap charge on subthreshold slope (SS) of GAAMOSFET devices. Further, design constraints of GAAMOSFET devices with emphasis on the effect of interface trap charge on device SS performance are investigated.

Design of Charge Pump Circuit for Floating Gate Power Supply of Intelligent Power Module (Intelligent Power Module의 플로팅 게이트 전원 공급을 위한 전하 펌프 회로의 설계)

  • Lim, Jeong-Gyu;Chung, Se-Kyo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.135-144
    • /
    • 2008
  • A bootstrap circuit is widely used for the floating gate power supply of Intelligent power module (IPM). A bootstrap circuit is simple and inexpensive. However, the duty cycle and on-time are limited by the requirement to refresh the charge in the bootstrap capacitor. And the value of the bootstrap capacitor should be increased as the switching frequency decreases. A charge pump circuit can be used to overcome the problems. This paper deals with an analysis and design of a charge pump circuit for the floating gate power supply of an IPM. The simulation and experiment are carried out for an induction motor drive system. The results well verifies the validity of the proposed circuit and design method.