DOI QR코드

DOI QR Code

Comparison of Soft Magnetic Properties of Permalloy and Conetic Thin Films

퍼멀로이와 코네틱 박막의 연자성 특성 비교

  • Choi, Jong-Gu (Dept. of Eastern-western Biomedical Engineering, Graduation, Sangji University) ;
  • Hwang, Do-Guwn (Dept. of Eastern-western Biomedical Engineering, Graduation, Sangji University) ;
  • Lee, Sang-Suk (Dept. of Eastern-western Biomedical Engineering, Graduation, Sangji University) ;
  • Rhee, Jang-Roh (Department of Physics, Sookmyung Women' University)
  • 최종구 (상지대학교 대학원 동서의료공학과) ;
  • 황도근 (상지대학교 대학원 동서의료공학과) ;
  • 이상석 (상지대학교 대학원 동서의료공학과) ;
  • 이장로 (숙명여자대학교 자연과학대학 물리학과)
  • Published : 2009.08.31

Abstract

The soft magnetic property for the Corning glass/Ta(5 nm)/[Conetic, Permalloy)/Ta(3 nm) prepared by the ion beam deposition sputtering was investigated. The coercivity and saturation magnetic field of conetic (NiFeCuMo) and permalloy (NiFe) layer with easy and hard direction along to the applying magnetic field during deposition was compared with each other. The surface resistance of conetic film with a thickness of 10 nm was 2 times lower than one of permalloy film. The coercivity and the magnetic susceptibility of conetic film decreased and increased 3 times to one of permalloy film, respectively. These results suggest that a highly sensitive GMR-SV or MTJ using conetic film can be possible to develop the bio-device.

이온빔 증착법으로 제작한 코닝유리(Corning glass)/Ta(5 nm)/(Permalloy, Conetic)/Ta(5 nm) 박막에 대한 연자성의 특성에 대해 연구하였다. 퍼멀로이(Permalloy; NiFe)층과 코네틱(Conetic; NiFeCuMo)층을 증착하여 인가 자기장 방향에 용이축과 곤란축의 자기저항곡선으로부터 얻은 보자력과 포화자기장에 대해 각각 비교하였다. 두께가 10${\sim}$15 nm인 코네틱 박막의 표면저항값은 퍼멀로이 박막보다 2배 정도 높았으나 보자력과 포화자기장은 1/3배 정도 낮았으며, 자화율은 2${\sim}$3배 정도 높은 초연자성의 특성을 가졌다. 퍼멀로이 박막보다 연자성의 특성이 높은 코네틱 박막을 이용한 스핀밸브나 터널접합의 소자를 개발할 수 있는 가능성을 확인하였다.

Keywords

References

  1. W. F. Egelhoff Jr., R. D. McMichael, C. L. Dennis, M. D. Stiles, F. Johnson, A. J. Shapiro, B. B. Maranville, and C. J. Popwell, Thin Solid Films, 505, 90 (2006). https://doi.org/10.1016/j.tsf.2005.10.014
  2. N. A. Stutzke, S. E. Russek, D. P. Pappas, and M. Tondra, J. Appl. Phys., 97, 10Q107 (2005). https://doi.org/10.1063/1.1861375
  3. C. W. Chen, Magnetism and Metallurgy of Soft Magnetic Materials, Dover, New York (1986).
  4. M. Tondra, J. M. Daughton, C. Nordman, D. Wang, and J. Taylor, J. Appl. Phys., 87, 4679 (2000). https://doi.org/10.1063/1.373128
  5. X. Liu, C. Ren, and G. Xiao. J. Appl. Phys., 92, 4722 (2002). https://doi.org/10.1063/1.1507818
  6. M. E. McHenry, M. A. Willard, and D. E. Laughlin, Prog. Mater. Sci., 44, 291 (1999). https://doi.org/10.1016/S0079-6425(99)00002-X
  7. F. Pfeifer and C. Radeloff, J. Magn. Magn. Mater., 19, 190 (1980). https://doi.org/10.1016/0304-8853(80)90592-2
  8. S. H. Park, K. S. Soh, G. Yoon, and S. S. Lee, J. Kor. Phys. Soc., 54, 2052 (2008).
  9. S. S. Lee, B. Y. Kim, J. Y. Lee, D. G. Hwang, S. W. Kim, M. Y. Kim, J. Y. Hwang, and J. R. Rhee, J. Appl. Phys., 95, 7525 (2004). https://doi.org/10.1063/1.1676035
  10. H. E. Yang and H. S. Lee, Electromagnetic Materials, (Korean), Namdoo Books, pp. 42, 98 (2001).
  11. C. Kittel, Introduction to Solid State Physics, Eighth Ed. John Wiley & Sons Inc, pp. 634-640 (2005).
  12. D. Seong, S. S. Lee, and D. Youm, Solid State Commun., 76, 1341 (1990). https://doi.org/10.1016/0038-1098(90)90382-L
  13. M. Ohring, Materials Science of Thin Films, 2nd Ed., Academic Press, pp. 495-558 (2002).
  14. J. G. Choi, J. H. Choi, K. A. Lee, D. G. Hwang, J. R. Rhee, and S. S. Lee, Submitted to J. Kor. Phys. Soc. (2009).
  15. D. W. Kim, J. H. Lee, M. J. Kim, and S. S. Lee, J. Magnetics, 14, 80 (2009). https://doi.org/10.4283/JMAG.2009.14.2.080
  16. W. H. Lee, D. G. Hwang, and S. S. Lee, J. Magnetics, 14, 18 (2009). https://doi.org/10.4283/JMAG.2009.14.1.018

Cited by

  1. Exchange bias field and coercivity of [NiFe/NiFeCuMo/NiFe]/FeMn multilayers vol.62, pp.12, 2013, https://doi.org/10.3938/jkps.62.1954