DOI QR코드

DOI QR Code

Microstructure and Magnetic Properties of Electroplated Ni-Fe Permalloy Thin Films by Saccharin Concentration in Electrolytes

전해액 내 사카린의 농도 변화에 의한 전기도금 니켈-철 퍼멀로이 박막의 미세구조와 자기적 특성 변화

  • Lee, Ho-Jun (Department of Physics, Chungnam National University) ;
  • Bang, Won-Bae (Department of Physics, Chungnam National University) ;
  • Hong, Ki-Min (Department of Physics, Chungnam National University) ;
  • Ko, Young-Dong (Department of Physics, Soongsil University) ;
  • Chung, Jin-Seok (Department of Physics, Soongsil University) ;
  • Lee, Hee-Bok (Department of Physics Education, Kongju National University)
  • Published : 2009.08.31

Abstract

We studied the effects of Saccharin on the properties of electroplated Ni-Fe Permalloy thin films. When 0 to 1 ${\mu}mol/L$ of Saccharin was added to the plating electrolyte, the grain sizes of the deposits are found to decrease, which reduces the surface roughness and the coercivity and increases the permeability and magnetoimpedance. The reduction in the grain sizes is strongly correlated with increases in the incremental permeability and the magnetoimpedance. We demonstrated that Saccharine is a useful additive for the electrodeposition of soft Permalloy thin films and that the softness can be adjusted by varying the concentration of Saccharin.

전기도금 니켈-철 퍼멀로이 박막에 대한 사카린의 영향에 대해 조사하였다. 1 ${\mu}mol/L$ 이하 농도의 사카린이 도금용 전해액에 첨가되면, 도금 박막의 결정립 크기를 감소시키고, 표면 거칠기를 낮추는 효과가 있다. 이러한 물성의 변화는 자기적 특성 중 보자력의 감소와 투자율과 자기임피던스의 증가로 나타난다. 결정립 크기의 감소는 증분투자율과 자기임피던스의 증가와 매우 밀접한 상관관계를 나타내고 있다. 사카린은 전기도금 연자성 퍼멀로이 박막에 유용한 첨가제이며 사카린의 농도변화로 연자성의 조절 가능성을 보였다.

Keywords

References

  1. M.-H. Bao and W.-Y. Wang, Future of Microelectromechanical Systems (MEMS). Sens. Actuators A, 56, 135 (1996). https://doi.org/10.1016/0924-4247(96)01274-5
  2. P. Ripka, A. Platil, P. Kaspar, A. Tipek, M. Malatek, and L. Kraus, J. Magn. Magn. Mater., 254, 633 (2003). https://doi.org/10.1016/S0304-8853(02)00925-3
  3. M. Knobel and K. R. Pirota, J. Magn. Magn. Mater., 33, 242 (2002).
  4. Nosang V. Myung, D.-Y. Park, B.-Y. Yoo, and Paulo T. A. Sumodjo, J. Magn. Magn. Mater., 265, 189 (2003). https://doi.org/10.1016/S0304-8853(03)00264-6
  5. B. D. Cullity, Introduction to Magnetic Materials (Addison-Wesley, Reading, 1972).
  6. G. Herzer, IEEE Trans. Magn., 26, 1397 (1990). https://doi.org/10.1109/20.104389
  7. R. M. Bozorth, Ferromagnetism, 4th Ed. (Van Norstrand, Princeton, 1956).
  8. C. Cheung, G. Palumbo, and U. Erb, Scripta. Metall. et Mater., 31, 735 (1994). https://doi.org/10.1016/0956-716X(94)90219-4
  9. H. V. Venkatasetty, J. Electrochem. Soc., 117, 403 (1970). https://doi.org/10.1149/1.2407524
  10. H. L. Seet, X. P. Li, Z. J. Zhao, Y. K. Kong, H. M. Zheng, and W. C. Ng, J. Appl. Phys., 97, 10N304 (2005). https://doi.org/10.1063/1.1855712
  11. S.-H. Kim, T. Kang, H.-J. Sohn, Y.-C. Joo, Y.-W. Kim, T.-H. Yim, and H.-Y. Lee, Magnetic Materials, Process, and Devices VII and Electrodeposition of Alloys (Ed. S. Krongelb, The Electrochemical Society, Pennington, 2003).
  12. W. Bang, J. Bae, K. Hong, Y.-D. Ko, J.-S. Chung, and H. Lee, Property Change of Electroplated Permalloy Thin Films by Organic Additives, Journal of the Korean Magnetics Society, 17(3), 133 (2007). https://doi.org/10.4283/JKMS.2007.17.3.133
  13. A. Blondel, J. P. Meier, B. Doudin, and J.-Ph. Ansermet, Appl. Phys. Lett., 65(23), 3019 (1994). https://doi.org/10.1063/1.112495
  14. A. J. Bard and L. R. Faulkner, Electrochemical Methods, Fundamentals and Applications (Wiley, New York, 2001).
  15. M. J. Aus, B. Szpunar, A. M. El-Sherik, U. Erb, G. Palumbo, and K. T. Aust, Scripta. Metall. et Mater., 27, 1639 (1992). https://doi.org/10.1016/0956-716X(92)90158-B