DOI QR코드

DOI QR Code

Analysis of Microwave Permeability and Damping Constant in Amorphous CoFeHfO Thin Film

비정질 CoFeHfO 박막 재료의 마이크로파 투자율 및 감쇠상수 분석

  • Published : 2009.08.31

Abstract

The saturation magnetization and uniaxial anisotropy constant were obtained from magnetization and torque curves measurement in high resistive CoFeHfO thin film. The measured results were used for the analysis of the microwave complex permeability based on Landau-Lifshitz-Gilbert (LLG) theory. The high resistive CoFeHfO thin films showed very low damping constants of ${\alpha}$ = 0.014. The results are interpreted in terms of various magnetic phase with very low damping constant, which were existing inside the CoFeHfO thin film, through the linewidth analysis of the ferromagnetic resonance signal with magnetic field.

전도성 저항특성이 우수한 비정질 CoFeHfO재료의 자화곡선 및 토오크 측정으로부터 포화자화량 및 일축이방성상수를 도출하였으며, 이들 결과를 Landau-Lifshitz-Gilbert(LLG) 이론에 적용하여 마이크로파대역의 복소투자율 특성을 분석하였다. LLG 분석 결과 CoFeHfO 박막 재료의 감쇠상수(damping factor)는 ${\alpha}$ = 0.014로 매우 작은 값을 보였다. 이는 CoFeHfO 재료 내에 존재하는 다양한 자성상(magnetic phase)들 중 감쇠상수가 현저히 작은 자성상들에 의하여 유발되었음을 자기장의 세기에 따른 FMR(ferromagnetic resonance) 신호의 선폭 분석을 통하여 알 수 있었다.

Keywords

References

  1. G. F. Dionne, IEEE Trans. Magn., 39(5), (2003). https://doi.org/10.1109/TMAG.2003.816026
  2. H. Xi, J. Rantschler, S. Mao, M. T. Kief, and R. M. White, J. Phys. D: Appl. Phys., 36, 1464 (2003). https://doi.org/10.1088/0022-3727/36/13/305
  3. B. Viala, G. Visentin, and P. Gaud, IEEE Trans. Magn., 40, 1996 (2004). https://doi.org/10.1109/TMAG.2004.832487
  4. J. P. Michel, Y. Lamy, A. S. Royet, and B. Viala, IEEE Trans. Magn., 42(10), 3368 (2006). https://doi.org/10.1109/TMAG.2006.879961
  5. D. Y. Kim, S. S. Yoon, B. P. Rao, C. G. Kim, K. H. Kim, and M. Takahashi, IEEE Trans. Magn., 44(11), 3115 (2008). https://doi.org/10.1109/TMAG.2008.2001627
  6. N. D. Ha, M. H. Phan, and C. O. Kim, Nanotechnology, 18, 155705 (2007). https://doi.org/10.1088/0957-4484/18/15/155705
  7. N. D. Ha, C. G. Kim, C. O. Kim, and M. H. Phan, Solid State Comm., 141, 502 (2007). https://doi.org/10.1016/j.ssc.2006.12.017
  8. M. Yamaguchi, K. H. Kim, and S. Ikedaa, J. Magn. Magn. Mater., 304, 208 (2006). https://doi.org/10.1016/j.jmmm.2006.02.143
  9. E. C. Stoner and E. P. Wohlfarth, Phil. Trans. Roy. Soc., A240, 599 (1948).
  10. E. van de Riet and F. Roozeboom, J. Appl. Phys., 81(1), 350 (1997). https://doi.org/10.1063/1.364118
  11. J. O. Rantschler, R. D. McMichael, A. Castillo, W. F. Egelhoff, Jr., B. B. Maranville, D. Pulugurtha, A. P. Chen, and L. M. Connors, J. Appl. Phys., 101, 033911 (2007). https://doi.org/10.1063/1.2436471