Analysis of Core-level Spectra of the $Li/Ge(111)-3\times1$ Surface

$Li/Ge(111)-3\times1$ 표면의 Core-level 스펙트럼에 대한 분석 연구

  • Published : 2006.01.01

Abstract

By analyzing the Ge 34 core-level photoelectron spectrum, we studied the structure of the $Li/Ge(111)-3\times1$ surface. Two surface related components tying on either side of the main bulk peak were identified in the Ge 3d spectrum. The existence and the position of the two surface components in the core-level spectrum from $Li/Ge(111)-3\times1$ is similar to those of the $Li/Ge(111)-3\times1$, suggesting the similarities in structure of the two surfaces. The core-level photoelectron spectra of the Li-induced $Li/Ge(111)-3\times1$ surface are well consistent with the honeycomb-chain-channel model, which was proposed as the structure of the $Si/Ge(111)-3\times1$ induced by alkali metals.

[ $Li/Ge(111)-3{\times}1$ ] 표면의 구조를 고찰하기 위해, Ge 3d core-level 광전자 스펙트럼을 분석하였다. Curve fitting을 통하여 스펙트럼에서 bulk Ge 3d peak에 해당하는 peak의 양쪽에 각각 하나씩의 표면 성분이 있음을 확인하였다. $Li/Ge(111)-3\times1$ 표면의 core-level spectrum에서의 두 표면 peak의 존재와 그 위치는 같은 금속에 의해 유도된 $Si/Ge(111)-3\times1$의 경우와 유사하며, 이는 두 표면의 구조fl서의 유사성을 시사한다. $Li/Ge(111)-3\times1$ 표면의 core-level 광전자 스펙트럼에서 보이는 두 개의 표면 성분의 존재와 위치는 알칼리 금속으로부터 유도되는 $Si/Ge(111)-3\times1$의 구조 모형으로 제안된 honeycomb-chain 모형과 잘 일치한다.

Keywords

References

  1. H. Daimon and S. Ino, Surf. Sci. 164, 320 (1985) https://doi.org/10.1016/0039-6028(85)90715-0
  2. W. C. Fan and A. Ignatiev, Phys. Rev. B 41, 3592 (1990) https://doi.org/10.1103/PhysRevB.41.3592
  3. J. Quinn and F. Jona, Surf. Sci. 355, L307 (1991)
  4. D. Jeon, T. Hashizume, T. Sakurai, and R. F. Willis, Phys. Rev. Lett. 69, 1419 (1992) https://doi.org/10.1103/PhysRevLett.69.1419
  5. K. J. Wan, X. F. Lin, and J. Nogami, Phys. Rev. B 46, 13635 (1992) https://doi.org/10.1103/PhysRevB.46.13635
  6. K. J. Wan, X. F. Lin, and J. Nogami, Phys. Rev. B 47, 13700 (1993) https://doi.org/10.1103/PhysRevB.47.13700
  7. T. Hashizume, M. Katayama, D. Jeon, M. Aono, and T. Sakurai, Jpn. J. Appl. Phys. 32, L1263 (1993) https://doi.org/10.1143/JJAP.32.L1263
  8. S. C. Erwin and H. H. Weitering, Phys. Rev. Lett. 81, 2296 (1998) https://doi.org/10.1103/PhysRevLett.81.2296
  9. M.-H. Kang, J.-H. Kang, and S. Jeong, Phys. Rev. B 58, R13 359 (1998) https://doi.org/10.1103/PhysRevB.58.359
  10. G. Lee, S. Hong, H. Kim, D. Shin, J.-Y. Koo, H.-I. Lee, and D. W. Moon, Phys. Rev. Lett. 87, 056104 (2001) https://doi.org/10.1103/PhysRevLett.87.056104
  11. S. Hong, G. Lee, and H. Kim, J. Kor. Phys. Soc. 47, 100 (2005)
  12. K. Sakamoto, H. Ashima, H. M. Zhang, and R. I. G. Uhrberg, Phys. Rev. B 65, 045305 (2001) https://doi.org/10.1103/PhysRevB.65.045305
  13. W. C. Fan and A. Ignatiev, Phys. Rev. B 40, 5479 (1989) https://doi.org/10.1103/PhysRevB.40.5479
  14. C. Collazo-Davila, D. Grozea, and L. D. Marks, Phys. Rev. Lett. 80, 1678 (1998) https://doi.org/10.1103/PhysRevLett.80.1678
  15. L. Lottermoser, E. Landemark, D.-M. Smilgies, M. Nielsen, R. Feidenhans'l, G. Falkenberg, R. L. Johnson, M. Gierer, A. P. Seitsonen, H. Kleine, H. Bludau, H. Over, S. K. Kim, and F. Jona, Phys. Rev. Lett. 80, 3980 (1998) https://doi.org/10.1103/PhysRevLett.80.3980
  16. G. Lee, J. Kim, and R. F. Willis, J. Kor. Phys. Soc. 35, S139 (1999)
  17. G. Lee, J. Kim, I. Chizhov, H. Mai, and R. F. Willis, Phys. Rev. B 61, 9921 (2000) https://doi.org/10.1103/PhysRevB.61.9921
  18. G. Lee, H. Mai, and R. F. Willis, Phys. Rev. B 63, 085323 (2001) https://doi.org/10.1103/PhysRevB.63.085323
  19. J. W. Kim, S. Kim, J. M. Seo, S. Tanaka, and M. Kamada, J. Phy.: Condens. Matter 10, 3771 (1998)
  20. M. Gothelid, S. Odasso, G. LeLay, M. Bjorkqvist, E. Janin, U. O. Karlsson, and M. Grehk, Appl. Surf. Sci. 104/105, 113 (1996) https://doi.org/10.1016/S0169-4332(96)00131-6
  21. T. M. Grehk, M. Gothelid, and M. Bjorkqvist, Phys. Rev. B 61, 4963 (2000) https://doi.org/10.1103/PhysRevB.61.4963
  22. G. Lee, E.-J. Cho, Y. Park, S. Cho, and H.-G. Lee, Surf. Sci. 501, L177 (2002) https://doi.org/10.1016/S0039-6028(01)01981-1
  23. G. Lee, J. Y. Lee, S. Kim, and E.-J. Cho, Surf. Sci. 532-535, 764 (2003)
  24. H. H. Weitering, X. Shi, and S. C. Erwin, Phys. Rev. B 54, 10585 (1996) https://doi.org/10.1103/PhysRevB.54.10585
  25. T. Okuda, H. Shigeoka, H. Daimon, S. Suga, T. Kinoshita, and A. Kakizaki, Surf. Sci. 321, 105 (1994) https://doi.org/10.1016/0039-6028(94)90031-0
  26. J. J. Paggel, G. Neuhold, H. Haak, and K. Horn, Phys. Rev. B 52, 5813 (1995) https://doi.org/10.1103/PhysRevB.52.5813
  27. A. A. Baski, S. C. Erwin, M. S. Turner, K. M. Jones, J. W. Dickinson, and J.S . Carlisle, Surf. Sci. 476, 22 (2001) https://doi.org/10.1016/S0039-6028(00)01112-2