• Title/Summary/Keyword: zinc oxide nanowire

Search Result 23, Processing Time 0.027 seconds

질병 유발 독성 물질(산화아연 나노선) 검출 기술 개발 (Disease inducing material ; Zinc Oxide nanowire detection)

  • 유준석;박진성;장규환;이상명;나성수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 춘계학술대회 논문집
    • /
    • pp.81-82
    • /
    • 2014
  • Recently it is often reported about toxic nanomaterials to organisms. In other words, it is called nanotoxicity, toxic nanomaterials have extremely toxic properties. Zinc oxide is widely used as a promising nanomaterials, but some researchers are warning that nanotype zinc oxide has nanotoxicity. One of typical zinc oxide materials is a zinc oxide nanowire, especially, there is no technique which is detecting a zinc oxide nanowire because of its geometric. In here, we use reduced graphene oxide in order to detect zinc oxide nanowire and use DNA immobilized cantilever sensor, we detect graphene wrapped zinc oxide nanowire. Detection of a zinc oxide nanowire is measured by shifting of cantilever's resonance frequency based on vibration theory. It is proved that cantilever sensor is valid for nanomaterial detection. We showed that detection of a zinc oxide nanowire is successful.

  • PDF

산화아연과 단중벽 탄소나노튜브 복합체의 수소가스 감응 특성 (Hydrogen Sensing Properties of ZnO-SWNTs Composite)

  • 정진연;송혜진;강영진;오동훈;정혁;조유석;김도진
    • 한국재료학회지
    • /
    • 제18권10호
    • /
    • pp.529-534
    • /
    • 2008
  • The hydrogen gas sensing properties of a zinc oxide nanowire structure were studied. Porous zinc oxide nanowire structures were fabricated by oxidizing zinc deposited on a single-wall carbon nanotube (SWNT) template. This revealed a porous ZnO-SWNT composite due to the porosity in the SWNT film. The gas sensing properties were compared with those of zinc oxide thin films deposited on SiO2/Si substrates in sensitivity and operating temperature. The composite structure showed higher sensitivity and lower operating temperature than the zinc oxide film. It showed a response even at room temperature while the film structure did not.

Preparation of Nitrogen-doped Carbon Nanowire Arrays by Carbonization of Mussel-inspired Polydopamine

  • Oh, Youngseok;Lee, Jea Uk;Lee, Wonoh
    • Composites Research
    • /
    • 제29권4호
    • /
    • pp.132-137
    • /
    • 2016
  • Based on mussel-inspired polydopamine (PDA), a novel technique to fabricate carbon nanowire (CNW) arrays is presented for a possible use of porous carbon electrode in electrochemical energy storage applications. PDA can give more porosity and nitrogen-doping effect to carbon electrodes, since it has high graphitic carbon yield characteristic and rich amine functionalities. Using such outstanding properties, the applicability of PDA for electrochemical energy storage devices was investigated. To achieve this, the decoration of the CNW arrays on carbon fiber surface was performed to increase the surface area for storage of electrical charge and the chemical active sites. Here, zinc oxide (ZnO) nanowire (NW) arrays were hydrothermally grown on the carbon fiber surface and then, PDA was coated on ZnO NWs. Finally, high temperature annealing was performed to carbonize PDA coating layers. For higher energy density, manganese oxide ($MnO_x$) nanoparticles (NPs), were deposited on the carbonized PDA NW arrays. The enlarged surface area induced by carbon nanowire arrays led to a 4.7-fold enhancement in areal capacitance compared to that of bare carbon fibers. The capacitance of nanowire-decorated electrodes reached up to $105.7mF/cm^2$, which is 59 times higher than that of pristine carbon fibers.

나노뿔 형태로 제작된 ZnO 나노선의 전계방출 특성 (Field Emission Property of ZnO Nanowire with Nanocone Shape)

  • 노임준;신백균
    • 전기학회논문지
    • /
    • 제61권4호
    • /
    • pp.590-594
    • /
    • 2012
  • ZnO nanowires were fabricated by hydrothermal synthesis technique for field emission device application. Al-doped zinc oxide (AZO) thin films were prepared as seed layer of catalyst for the ZnO nanowire synthesis, for which conductivity of the seed layer was tried to be improved for enhancing the field emission property of the ZnO nanowire. The AZO seed layer revealed specific resistivity of $ 7.466{\times}10^{-4}[{\Omega}{\cdot}cm]$ and carrier mobility of 18.6[$cm^2$/Vs]. Additionally, upper tip of the prepared ZnO nanowires was treated by hydrochloric acid (HCl) to form a nanocone shape of ZnO nanowire, which was aimed for enhanced focusing of electric field on that and resultingly to improve field emission property of the ZnO nanowires. The ZnO nanowire with nanocone shape revealed decreased threshold electric field and increased current density than those of the simple ZnO nanowires.

Zinc oxide seed layer 형성 조건 제어를 통한 나노 구조체 형상 조절 연구

  • 이재혁;김성현;이경일;이철승;조진우;김선민
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.386-386
    • /
    • 2011
  • sol-gel 및 hydrothermal growth method를 이용한 zinc oxide nanorod는 제작 시 고가의 장비가 필요치 않기에 저비용 대면적 박막을 제작하는데 적합하지만 rod들의 array 및 density 조절에서 어려움을 가지고 있다. 본 연구에서는 이러한 nanorod array 형상 조절을 위하여 zinc oxide seed layer 형성 과정 중 precursor solution에 이종 나노 입자를 첨가하였다. 첨가한 seed precursor solution을 spin coating한 이후에 후처리 하여 hydrothermal method를 이용해 성장시켰다. 합성한 rod들을 optic과 FE-SEM으로 측정해 rod들의 density 변화를 확인할 수 있었다.

  • PDF

Selective Growth of Nanosphere Assisted Vertical Zinc Oxide Nanowires with Hydrothermal Method

  • Lee, Jin-Su;Nam, Sang-Hun;Yu, Jung-Hun;Yun, Sang-Ho;Boo, Jin-Hyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.252.2-252.2
    • /
    • 2013
  • ZnO nanostructures have a lot of interest for decades due to its varied applications such as light-emitting devices, power generators, solar cells, and sensing devices etc. To get the high performance of these devices, the factors of nanostructure geometry, spacing, and alignment are important. So, Patterning of vertically- aligned ZnO nanowires are currently attractive. However, many of ZnO nanowire or nanorod fabrication methods are needs high temperature, such vapor phase transport process, metal-organic chemical vapor deposition (MOCVD), metal-organic vapor phase epitaxy, thermal evaporation, pulse laser deposition and thermal chemical vapor deposition. While hydrothermal process has great advantages-low temperature (less than $100^{\circ}C$), simple steps, short time consuming, without catalyst, and relatively ease to control than as mentioned various methods. In this work, we investigate the dependence of ZnO nanowire alignment and morphology on si substrate using of nanosphere template with various precursor concentration and components via hydrothermal process. The brief experimental scheme is as follow. First synthesized ZnO seed solution was spun coated on to cleaned Si substrate, and then annealed $350^{\circ}C$ for 1h in the furnace. Second, 200nm sized close-packed nanospheres were formed on the seed layer-coated substrate by using of gas-liquid-solid interfacial self-assembly method and drying in vaccum desicator for about a day to enhance the adhesion between seed layer and nanospheres. After that, zinc oxide nanowires were synthesized using a low temperature hydrothermal method based on alkali solution. The specimens were immersed upside down in the autoclave bath to prevent some precipitates which formed and covered on the surface. The hydrothermal conditions such as growth temperature, growth time, solution concentration, and additives are variously performed to optimize the morphologies of nanowire. To characterize the crystal structure of seed layer and nanowires, morphology, and optical properties, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and photoluminescence (PL) studies were investigated.

  • PDF

P형 4H-SiC 기판에 형성된 ZnO 박막/나노선 가스 센서의 300℃에서 CO 가스 감지 특성 (CO Gas Sensing Characteristic of ZnO Thin Film/Nanowire Based on p-type 4H-SiC Substrate at 300℃)

  • 김익주;오병훈;이정호;구상모
    • 한국전기전자재료학회논문지
    • /
    • 제25권2호
    • /
    • pp.91-95
    • /
    • 2012
  • ZnO thin films were deposited on p-type 4H-SiC substrate by pulsed laser deposition. ZnO nanowires were formed on p-type 4H-SiC substrate by furnace. Ti/Au electrodes were deposited on ZnO thin film/SiC and ZnO nanowire/SiC structures, respectively. Structural and crystallographical properties of the fabricated ZnO thin film/SiC and ZnO nanowire/SiC structures were investigated by field emission scanning electron microscope and X-ray diffraction. In this work, resistance and sensitivity of ZnO thin film/SiC gas sensor and ZnO nanowire/SiC gas sensor were measured at $300^{\circ}C$ with various CO gas concentrations (0%, 90%, 70%, and 50%). Resistance of gas sensor decreases at CO gas atmosphere. Sensitivity of ZnO nanowire/SiC gas sensor is twice as big as sensitivity of ZnO thin film/SiC gas sensor.

ZnO 나노와이어를 이용한 FET 소자 제작 및 특성 평가 (Fabrication and Characterization of FET Device Using ZnO Nanowires)

  • 김경원;오원석;장건익;박동원;이정오;김범수
    • 한국표면공학회지
    • /
    • 제41권1호
    • /
    • pp.12-15
    • /
    • 2008
  • The zinc oxide(ZnO) nanowires were deposited on Si(001) substrates by thermal chemical vapour deposition without any catalysts. SEM data suggested that the grown nanostructures were the well-aligned ZnO single crystals with preferential orientation. Back-gate ZnO nanowire field effect transistors(FET) were successfully fabricated using a photolithography process. The fabricated nanowire FET exhibits good contact between the ZnO nonowire and Au metal electrodes. Based on I-V characteristics it was found out that the ZnO nanowire revealed a characteristic of n-type field effect transistor. The drain current increases with increasing drain voltage, and the slopes of the $I_{ds}-V_{ds}$ curves are dependent on the gate voltage.

산화아연(Zinc oxide) 나노입자와 은나노 와이어(Silver nanowire)를 함유한 Poly(vinylidene fluoride) 복합나노섬유 제조 및 동작 센서로의 적용 가능성 탐색 (Fabrication of Poly(Vinylidene Fluoride) Nanocomposite Fibers Containing Zinc Oxide Nanoparticles and Silver Nanowires and their Application in Textile Sensors for Motion Detection and Monitoring)

  • 양혁주;이승신
    • 한국의류학회지
    • /
    • 제47권3호
    • /
    • pp.577-592
    • /
    • 2023
  • In this study, nanofiber-based textile sensors were developed for motion detection and monitoring. Poly(vinylidene fluoride) (PVDF) nanofibers containing zinc oxide (ZnO) nanoparticles and silver nanowires (AgNW) were fabricated using electrospinning. PVDF was chosen as a piezoelectric polymer, zinc oxide as a piezoelectric ceramic, and AgNW as a metal to improve electric conductivity. The PVDF/ZnO/AgNW nanocomposite fibers were used to develop a textile sensor, which was then incorporated into an elbow band to develop a wearable smart band. Changes in the output voltage and peak-to-peak voltage (Vp-p) generated by the joint's flexion and extension were investigated using a dummy elbow. The β-phase crystallinity of pure PVDF nanofibers was 58% when analyzed using Fourier transform infrared spectroscopy; however, the β-phase crystallinity increased to 70% in PVDF nanofibers containing ZnO and to 78% in PVDF nanocomposite fibers containing both ZnO and AgNW. The textile sensor's output voltage values varied with joint-bending angle; upon increasing the joint angle from 45° to 90° to 150°, the Vp-p value increased from 0.321 Vp-p to 0.542 Vp-p to 0.660 Vp-p respectively. This suggests that the textile sensor can be used to detect and monitor body movements.