DOI QR코드

DOI QR Code

Fabrication and Characterization of FET Device Using ZnO Nanowires

ZnO 나노와이어를 이용한 FET 소자 제작 및 특성 평가

  • Kim, K.W. (Department of Advanced Materials Engineering, CBITRC, Chungbuk National University) ;
  • Oh, W.S. (Department of Advanced Materials Engineering, CBITRC, Chungbuk National University) ;
  • Jang, G.E. (Department of Advanced Materials Engineering, CBITRC, Chungbuk National University) ;
  • Park, D.W. (Fusion Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Lee, J.O. (Fusion Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, B.S. (Department of Chemical Engineering, Chungbuk National University)
  • 김경원 (충북대학교 공과대학 신소재공학과) ;
  • 오원석 (충북대학교 공과대학 신소재공학과) ;
  • 장건익 (충북대학교 공과대학 신소재공학과) ;
  • 박동원 (한국화학연구원 융합바이오연구센터) ;
  • 이정오 (한국화학연구원 융합바이오연구센터) ;
  • 김범수 (충북대학교 공과대학 화학공학과)
  • Published : 2008.02.29

Abstract

The zinc oxide(ZnO) nanowires were deposited on Si(001) substrates by thermal chemical vapour deposition without any catalysts. SEM data suggested that the grown nanostructures were the well-aligned ZnO single crystals with preferential orientation. Back-gate ZnO nanowire field effect transistors(FET) were successfully fabricated using a photolithography process. The fabricated nanowire FET exhibits good contact between the ZnO nonowire and Au metal electrodes. Based on I-V characteristics it was found out that the ZnO nanowire revealed a characteristic of n-type field effect transistor. The drain current increases with increasing drain voltage, and the slopes of the $I_{ds}-V_{ds}$ curves are dependent on the gate voltage.

Keywords

References

  1. N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett., 68 (1992) 1579 https://doi.org/10.1103/PhysRevLett.68.1579
  2. 박광수, 이종수, 강명일, 성만영, 김상식, Journal of the Korean Institute of Electronic Material Eng., 15(8) (2002) 651 https://doi.org/10.4313/JKEM.2002.15.8.651
  3. Z. Fan, D. Wang, P. C. Chang, W. Y. Tseng, J. G. Lua, Appl. Phys. Lett., 85(24) (2004) 5923 https://doi.org/10.1063/1.1836870
  4. S. E. Ahn, J. S. Lee, H. Kim, B. H. Kang, K. H. Kim, G. T. Kim, Appl. Phys. Lett., 84(24) (2004) 5022 https://doi.org/10.1063/1.1763633
  5. Y. Wu, P. Yang, Chem. Mater., 12 (2000) 605 https://doi.org/10.1021/cm9907514
  6. Z. G. Bai, D. P. Yu, H. Z. Zhang, Y. Ding, X. Z. Gai, Q. L. Hang, G. C. Xiong, S. Q. Feng, Chem. Phys. Lett., 303 (1999) 311 https://doi.org/10.1016/S0009-2614(99)00066-4
  7. M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, K. Hiruma, Appl. Phys. Lett., 61 (1992) 2051 https://doi.org/10.1063/1.108329
  8. Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, J. M. Kim, Adv. Mater., 12 (2000) 746 https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<746::AID-ADMA746>3.0.CO;2-N
  9. X. F. Duan, C. M. Lieber, Adv. Mater, 279 (2000) 208
  10. M. H. Huang, A. Choudrey, P. Yang, Chem. Commun, 76 (2000) 1603
  11. N. W. Emanetoglu, C. Gorla, Y. Liu, Y. Lu, Materials Science in Semiconductor Processing, 2 (1999) 247 https://doi.org/10.1016/S1369-8001(99)00022-0
  12. Y. R. Ryu, S. Zhu, J. D. Budai, H. R. Chandrasekhar, P. F. Miceli, H. W. White, J. Appl. Phys., 88 (2000) 201 https://doi.org/10.1063/1.373643
  13. 김강현, 강해용, 임찬영, 전대영, 김혜영, 김규태, 이종수, 강원, 한국전기전자재료학회, 18(12) (2005) 1087 https://doi.org/10.4313/JKEM.2005.18.12.1087
  14. K. Keem, J. Kang, C. Yoon, D. Yeom, D. Jeong, B. Moon, S. Kim, Mic. Eng., 84 (2007) 1622-1626 https://doi.org/10.1016/j.mee.2007.01.258
  15. Y. Huang, X. Duan, Y. Cui, C. M. Lieber, Nano Lett., 2 (2002) 101 https://doi.org/10.1021/nl015667d