• Title/Summary/Keyword: zero-order approximation solution

Search Result 12, Processing Time 0.02 seconds

A unified solution to optimal Hankel-Norm approximation problem (최적 한켈 놈 근사화 문제의 통합형 해)

  • Youn, Sang-Soon;Kwon, Oh-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.170-177
    • /
    • 1998
  • In this paper, a unified solution of Hankel norm approximation problem is proposed by $\delta$-operator. To derive the main result, all-pass property is derived from the inner and co-inner property in the $\delta$-domain. The solution of all-pass becomes an optimal Hankel norm approximation problem in .delta.-domain through LLFT(Low Linear Fractional Transformation) inserting feedback term $\phi(\gamma)$, which is a free design parameter, to hold the error bound desired against the variance between the original model and the solution of Hankel norm approximation problem. The proposed solution does not only cover continuous and discrete ones depending on sampling interval but also plays a key role in robust control and model reduction problem. The verification of the proposed solution is exemplified via simulation for the zero-order Hankel norm approximation problem and the model reduction problem applied to a 16th order MIMO system.

  • PDF

A Study on the Generation of Capillary Waves on Steep Gravity Waves

  • Lee, Seung-Joon
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.4
    • /
    • pp.45-55
    • /
    • 2000
  • A formal solution method using the complex analysis is given for the problems derived by Longuet-Higgins(1963). The same method is applied to a new perturbation problem of higher approximation. Interpretation of its solution made it possible to confirm that the rough agree-ment of Longuet-Higgins\`s prediction with experimental data of Cox(1958) was mainly due to the fact that the gravity effect in the perturbation problem was neglected for the case when the basic gravity wave not sufficiently steep.

  • PDF

AN ASYMPTOTIC FINITE ELEMENT METHOD FOR SINGULARLY PERTURBED HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS OF CONVECTION-DIFFUSION TYPE WITH DISCONTINUOUS SOURCE TERM

  • Babu, A. Ramesh;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1057-1069
    • /
    • 2008
  • We consider singularly perturbed Boundary Value Problems (BVPs) for third and fourth order Ordinary Differential Equations(ODEs) of convection-diffusion type with discontinuous source term and a small positive parameter multiplying the highest derivative. Because of the type of Boundary Conditions(BCs) imposed on these equations these problems can be transformed into weakly coupled systems. In this system, the first equation does not have the small parameter but the second contains it. In this paper a computational method named as 'An asymptotic finite element method' for solving these systems is presented. In this method we first find an zero order asymptotic approximation to the solution and then the system is decoupled by replacing the first component of the solution by this approximation in the second equation. Then the second equation is independently solved by a fitted mesh Finite Element Method (FEM). Numerical experiments support our theoritical results.

  • PDF

Bifurcations of non-semi-simple eigenvalues and the zero-order approximations of responses at critical points of Hopf bifurcation in nonlinear systems

  • Chen, Yu Dong;Pei, Chun Yan;Chen, Su Huan
    • Structural Engineering and Mechanics
    • /
    • v.40 no.3
    • /
    • pp.335-346
    • /
    • 2011
  • This paper deals with the bifurcations of non-semi-simple eigenvalues at critical point of Hopf bifurcation to understand the dynamic behavior of the system. By using the Puiseux expansion, the expression of the bifurcation of non-semi-simple eigenvalues and the corresponding topological structure in the parameter space are obtained. The zero-order approximate solutions in the vicinity of the critical points at which the multiple Hopf bifurcation may occur are developed. A numerical example, the flutter problem of an airfoil in simplified model, is given to illustrate the application of the proposed method.

NUMERICAL METHOD FOR SINGULARLY PERTURBED THIRD ORDER ORDINARY DIFFERENTIAL EQUATIONS OF REACTION-DIFFUSION TYPE

  • ROJA, J. CHRISTY;TAMILSELVAN, A.
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.277-302
    • /
    • 2017
  • In this paper, we have proposed a numerical method for Singularly Perturbed Boundary Value Problems (SPBVPs) of reaction-diffusion type of third order Ordinary Differential Equations (ODEs). The SPBVP is reduced into a weakly coupled system of one first order and one second order ODEs, one without the parameter and the other with the parameter ${\varepsilon}$ multiplying the highest derivative subject to suitable initial and boundary conditions, respectively. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference scheme. The weakly coupled system is decoupled by replacing one of the unknowns by its zero-order asymptotic expansion. Finally the present numerical method is applied to the decoupled system. In order to get a numerical solution for the derivative of the solution, the domain is divided into three regions namely two inner regions and one outer region. The Shooting method is applied to two inner regions whereas for the outer region, standard finite difference (FD) scheme is applied. Necessary error estimates are derived for the method. Computational efficiency and accuracy are verified through numerical examples. The method is easy to implement and suitable for parallel computing. The main advantage of this method is that due to decoupling the system, the computation time is very much reduced.

REGULARIZATION FOR THE PROBLEM OF FINDING A SOLUTION OF A SYSTEM OF NONLINEAR MONOTONE ILL-POSED EQUATIONS IN BANACH SPACES

  • Tran, Thi Huong;Kim, Jong Kyu;Nguyen, Thi Thu Thuy
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.849-875
    • /
    • 2018
  • The purpose of this paper is to present an operator method of regularization for the problem of finding a solution of a system of nonlinear ill-posed equations with a monotone hemicontinuous mapping and N inverse-strongly monotone mappings in Banach spaces. A regularization parameter choice is given and convergence rate of the regularized solutions is estimated. We also give the convergence and convergence rate for regularized solutions in connection with the finite-dimensional approximation. An iterative regularization method of zero order in a real Hilbert space and two examples of numerical expressions are also given to illustrate the effectiveness of the proposed methods.

Optimal design of composite laminates for minimizing delamination stresses by particle swarm optimization combined with FEM

  • Chen, Jianqiao;Peng, Wenjie;Ge, Rui;Wei, Junhong
    • Structural Engineering and Mechanics
    • /
    • v.31 no.4
    • /
    • pp.407-421
    • /
    • 2009
  • The present paper addresses the optimal design of composite laminates with the aim of minimizing free-edge delamination stresses. A technique involving the application of particle swarm optimization (PSO) integrated with FEM was developed for the optimization. Optimization was also conducted with the zero-order method (ZOM) included in ANSYS. The semi-analytical method, which provides an approximation of the interlaminar normal stress of laminates under in-plane load, was used to partially validate the optimization results. It was found that optimal results based on ZOM are sensitive to the starting design points, and an unsuitable initial design set will lead to a result far from global solution. By contrast, the proposed method can find the global optimal solution regardless of initial designs, and the solutions were better than those obtained by ZOM in all the cases investigated.

A HIGHER ORDER NUMERICAL SCHEME FOR SINGULARLY PERTURBED BURGER-HUXLEY EQUATION

  • Jiwrai, Ram;Mittal, R.C.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.813-829
    • /
    • 2011
  • In this article, we present a numerical scheme for solving singularly perturbed (i.e. highest -order derivative term multiplied by small parameter) Burgers-Huxley equation with appropriate initial and boundary conditions. Most of the traditional methods fail to capture the effect of layer behavior when small parameter tends to zero. The presence of perturbation parameter and nonlinearity in the problem leads to severe difficulties in the solution approximation. To overcome such difficulties the present numerical scheme is constructed. In construction of the numerical scheme, the first step is the dicretization of the time variable using forward difference formula with constant step length. Then, the resulting non linear singularly perturbed semidiscrete problem is linearized using quasi-linearization process. Finally, differential quadrature method is used for space discretization. The error estimate and convergence of the numerical scheme is discussed. A set of numerical experiment is carried out in support of the developed scheme.

Evaluation of Sulfite Solution to Predict Oxygen Transfer Rates in Artificial Lung (인공폐에서의 산소전달 속도를 예측하기 위한 아황산용액의 평가)

  • Lee, S.C.;Kim, K.B.;Jheong, G.R.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.237-238
    • /
    • 1998
  • The kinetics of sulfite oxidation must be fast and the concentration of sulfite must be low to emulate oxygen uptake by blood. The kinetics were studied yielding a first order rate constant in sulfile, zero order in oxygen. Limitations of the technique were evaluated using the experimental rate constant and an adaptation of Lightfoot's approximation, while the reaction of hemoglobin is reversible and essentially instantaneous, that for sulfite is irreversible and finite. Thus if the approach to saturations not monotonic or if the mass transfer resistance is significantly lowered, e. g. when blood film thicknesses are thinner than a few hundred microns, deviations may occur.

  • PDF

Analysis and Approximation of Linear feedback control problems for the Boussinesq equations

  • 최영미;이형천
    • Proceedings of the Korean Society of Computational and Applied Mathematics Conference
    • /
    • 2003.09a
    • /
    • pp.6-6
    • /
    • 2003
  • In this work we consider the mathematical formulation and numerical resolution of the linear feedback control problem for Boussinesq equations. The controlled Boussinesq equations is given by $$\frac{{\partial}u}{{\partial}t}-{\nu}{\Delta}u+(u{\cdot}{\nabla}u+{\nabla}p={\beta}{\theta}g+f+F\;\;in\;(0,\;T){\times}\;{\Omega}$$, $${\nabla}{\cdot}u=0\;\;in\;(0,\;T){\times}{\Omega}$$, $$u|_{{\partial}{\Omega}=0,\;u(0,x)=\;u_0(x)$$ $$\frac{{\partial}{\theta}}{{\partial}t}-k{\Delta}{\theta}+(u{\cdot}){\theta}={\tau}+T,\;\;in(0,\;T){\times}{\Omega}$$ $${\theta}|_{{\partial}{\Omega}=0,\;\;{\theta}(0,X)={\theta}_0(X)$$, where $\Omega$ is a bounded open set in $R^{n}$, n=2 or 3 with a $C^{\infty}$ boundary ${\partial}{\Omega}$. The control is achieved by means of a linear feedback law relating the body forces to the velocity and temperature field, i.e., $$f=-{\gamma}_1(u-U),\;\;{\tau}=-{\gamma}_2({\theta}-{\Theta}}$$ where (U,$\Theta$) are target velocity and temperature. We show that the unsteady solutions to Boussinesq equations are stabilizable by internal controllers with exponential decaying property. In order to compute (approximations to) solution, semi discrete-in-time and full space-time discrete approximations are also studied. We prove that the difference between the solution of the discrete problem and the target solution decay to zero exponentially for sufficiently small time step.

  • PDF