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Abstract

A formal solution method using the complex analysis is given for the problems derived by
Longuet-Higgins(1963). The same method is applied to a new perturbation problem of higher
approximation. Interpretation of its solution made it possible to confirm that the rough agree-
ment of Longuet-Higgins’ prediction with the experimental data of Cox(1958) was mainly
due to the fact that the gravity cffect in the perturbation problem was neglected for the case
when the basic gravity wave was not sufficiently steep.
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1 Introduction

Cox(1958) presented an experimental report, in which he described capillary waves generated on
the forward face of free steep gravity waves of wavelengths 5~50 cm. Following this, Longuet-
Higgins(1963)(hereafter will be denoted as LH)gave a theory for the phenomenon, and obtained an
approximate expression for the ripple steepness. The purpose of the present paper is to give for the
problems derived by LH a formal solution procedure, which can also provide more information on
characteristics of the solution, and to consider other possible solutions of the problems of higher
approximation. Developing his theory, LH made use of the wave theory proposed first by Levi-
Civita(1925) and further advanced by Davies(1951). The former devised a way of approximation
suitable for waves of small steepness and the latter for those of finite steepness. Later, Tulin(1982)
also used the similar theory for describing the generation of waves by moving bodies. Following
LH, we consider two-dimensional, irrotational waves in a perfect fluid moving horizontally with
velocity -¢, and the uniform velocity ¢ is superposed to make the whole flow steady. The x-axis
is taken horizontally, and y-axis vertically upward and we write z = z + iy . Let’s denote the
velocity potential ¢, the stream function %, the complex potential x, and the complex velocity w,
then the following relations hold.,

dx d¢ Oy

== — e

dz Oz + Oz

where u and v are the components of velocity. Let ¢ and @ be the magnitude and direction of the
velacity, and we define 7 by ¢ = ce”, then we have

=u— 1w (1.1)

w=u—iv=ge ¥ =ce” ¥ = el (L.2)
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where we set
(=T17—1f (1.3

We may then formulate a problem for which ¢ and z are described in terms of .
From Bernoulli’s equation on the free surface we have

1

50Tyt g =const., on P =0 (1.4)

where g is the gravitational acceleration, p the pressure, and p the density of the fluid, respectively.

Here, we take ¢ = 0 at the crest of the wave. The water depth is assumed as infinite, and we

have ¥y —+ —oc, and { — 0 as y — —oc. On the free surface the pressure is given by

p = const — T'k, where T is the surface tension and & the curvature. Since on the free surface
0o a0

K= —

where s is the arc length, and from the Cauchy-Riemann condition for {(x) to be analytic, we
have

ar  dq
K=Qz5 = 5 (1.6)
o
Then (1.4) can be rewritten as
l'.;. T’6 =const.,, on H=0 (L.7)
50 +oy~T 4 ) = const., = .
where we denote
A (1.8)
P
Differentiating (1.7) with respect to ¢, we get
L &*q
+g=~-T——=0, on =0 (1.9)
op 996~ " ag09 v
On the free surface
. 3y oy
= — = J— . O
siné B q 3 (1.10)
and substitution of this in (1.9) gives
8 d*q
oy dsing-T—1L =0, =0 1.11
6 ) + 51 D60 =0, on ( )

Neglecting the surface tension from (1.11) entirely, and using the subscript () for representing the
basic flow, we obtain the zero-order problem of LH as follows,

Qg-q+gsm90=0 on =0 ' (1.12)

©9¢
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In deriving the perturbation problem, LH first let { = (o + (3. ¢ = go + q1 . etc., where the
subscript 1 is used for perturbation terms, then from (1.7) by neglecting the second order term he
got

dg9  Om
Ty T

If we subtract from this the boundary condition for the basic flow, we obtain the perturbation
problem of LH as follows,

= i

5 const., on % =0 (1.1

=@+ qoq) + g9(yo + 1) — T'(=—

P P
Qo091 + g1 — T'af/} T’a—i’;’+mst on -0 (1.14)

In the sequel, we first solve the zero-order problem (1.12), then the perturbation problem (1.14),
and give a discussion in the last section.

2 Zero-order problem

If we momentarily delete the subscript 0 for the basic flow in this section, (1.12) is rewritten as

dg

—+—s1n8 0, on =0 2.1
T5¢ (4 (2.1
In approximating the term sin @ in the equation above, Levi-Civita(1925) used sin € 22 @ lor waves
of small steepness, and Davies(1951) sinf = %sin 38 for those of finite steepness. Furthermore,
LH used

1
sinf = 3 8in 36 (2.2)

and justified its use by showing that this approximation in a way satisfies the exact boundary
condition on the free surface for the Stokes’ hmmng wave of 120° angle. Substituting (2.2) in
(2.1) we have

g
%+—sm33—0 on ¢=20 (2.3)
Solving this, we follow the fashion of Tulin(1982). If we define G = w?, and multiply (2.3) by
3/q% . we get
dG 3
R{I _—ﬂ)}:o, on =0 2.4
dy 2
where He stands for "the real part of.” Now, in order to extend this into the region + < 0, we make
use of the facts that

dG
- —0, G—¢c, as P — —x (2.5)
X
Then we obtain a first order differential equation for & as follows,
34
4G ke =39 o p<o (2.6)
dy 2°
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where we set
3g
k=_—"%
2¢8
If we introduce a new dependent variable defined by F = G — ¢, in terms of which we may
rewrite (2.6) as

2.7

dF
4+ = < .
dx +1kF =0, for ¥ <0 (2.8)

Its solution is given by
F = (e (2.9)

where C is a complex constant. Considering that § = 0 at the crest where y = 0 for symmetric
waves, we may set C = —c3 A, where A is a real positive constant. Substitution of this in (2.9),
and the definitions of ¥ and G render

el =1~ Ae~thx (2.10)

From the fact that €37, which is the lelt-hand side of {2.10) at the crest, must be positive, 4 € (0, 1)
can be seen. Certainly, (2.10) is the same as the solution that was obtained by LH. If the subscript
() is revived for denoting the basic flow, (2.10) can be rewritten as follows,

g = cfl+ A% —24e" cos kqﬁ)lfﬁ .10
g — —Lian-t Ae*? sin k¢
0 3 1 — Aek¥ cos ke

For almosl-highest waves, A = 1, and we may let A =1 — 4, where dis a small positive quantity.
If we set

k
approximations of (2.10) near the crest, where the relation e~*X 22 1 — ik holds, can be given as
| -
g = 8 P{L -0 + €5, 0= —gtan (T . ) (2.13)
The curvature of the free surface is given by
Oy ckA coskg — A
= — =— 2.14
"0 By 3 (L+ A? — 24 cos kp)>/® (219)
and thus near the crest we have approximaltely
K ‘
where we let the magnitude of the curvature at the crest K as
K-k __ g (2.16)

T 35273 Dc282/3
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3 Perturbation problem

In order to get a solution for the perturbation problem (1.14), LH neglected the term representing
the effect of gravity, and solved the following equation.

8@'1 — %0 dqo
6‘¢ oy’
where the constant term is also neglected without losing gencrality. Using the definitions of per-

mrbed terms given below (1.12), we can casily see g1 &2 ggr . and substitution of this in (3.1)
gives

doqL — =0 (3.1)

d{gom) Oqo
2 ' /
-Ir'——"=T— = :
1 oy 3 P =0 (3.2)
If we divide this by T'qp and rearrange the resulting equation, we obtain
or
S~ P(@n=-Q(#), on p=0 (3.3)
o
where we set
qo n _On
Introducing a new complex variable defined by
o=a+if = /P(x)dx (3.5)
we can see that
Jdo
56 P(#), on =0 (3.6)

and also that 3 = 0, Ji = 0. on ¢p = 0. Using the Cauchy-Riemann condition for #{x) to be
analytic, we can also show that on the free surface

67'1 _ 61‘1 Gﬂ on da 61‘1

oy 98 &y OB 8(;5 (¢) 7
If we substitute this in (3.3), divide by P(¢), and set
Q¢)
R(p) = ==L 3.8
(¢) P (3.8)
we have
o =-R =0 3.9
“BE_T]—_ (C!), on = (3.9)
Since 1 = 1 — 64, (3.9) can be rewritten as
Re {z— — (1} = —Re{R(o)}, on p=0 (3.10)
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Now, in order to extend this into the region 8 < 0, we make use of the facts that

%—*01 (1 —0, R{oc)—0, as o — —00, ie. as [8— —o0 (3.1

Then again we obtain a first order differential equation for {; as follows

%+m=mm,mrﬁg1 (3.12)

for which the solution is given by

. a- .
(o) =i R(a)e*da (3.13)
—ic0
where a is a complex variable. If we let r(#) be the Fourier transform of R{c}), which is a reat
even function of @, and so of a, we have

o0
r{t} =2 [ R(a) cos atda 3.1
J0
Then from the Fourier theorem. we also have
1 [ :
R{a) = = / r(t)e **dt (3.15)
T Jo
Using the analytic continuation of (3.15) in (3.13), we obtain
[T 1 oo . ,
(o) =177 [ - [ r(t)e *dte**da (3.16)
J—ioc T S0
After we change the order of integration, we may carry out the integration with respect (0 @ to get
1 [ r(t)eiet
=—-— ——dt 3.17
a3 [T G.17

where the path of integration in the complex ¢-plane should pass below the pole at £ = 1. Since,
for large values of |/, the major contribution comes from the residue at{ = 1, (; is approximately
given by

3.18
0, a>0 ( )

{—2ir(1)e—i*’, a<0
C1=

On the forward(backward) face, & < 0(> 0), thus the perturbed effects will be shown up mainly
on the forward face of the gravity wave. Again, (3.18) is the same as the solution given by LH
excepl the negative sign. We note that the perturbation solution (3.18) is in fact the homogeneous
solution of (3.12) and its amplimde is determined by the Fourier Transform of the forcing term.
Substituting (3.8) in (3.14) and using (3.4) and (3.6), we obtain

_ DOQ do _ o 670
1"(1)2.[0 Fcosaa—dfngfu 6_¢

" cos adg 3.19

¥=0
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Near the crest where € is small, o can be approximated by A£ as will be shown in (4.16), and
by using (2.12). (2.13), (2.15) and (2.16). we can obtain the following approximation of r(1), as
shown by LH,

o > cos AL _ T A
r(l) ~ 5/0 —1+£2d§— 3¢ (3.20)

Here, A is defined and can be expressed as follows,

N 208 g (3.21)
kT’ 3 g1’ 6 K27V
Substituting (3.20) in (3.18), we get on the forward face of the basic gravity wave
71 — 6 = b(sina —icosa) (3.22)
where b is given by
b= %’Te"‘ (3.23)

We note that the solution (3.18) was obtained for large ||, but the solution (3.22) for small £ . We
will get back to this point in the next section.

4 Discussion

4.1 Zero-order solution

Taking 3 = 01in (2.10), we have on the free surface
a0 = c(1 + A% — 2A cos k) /6 4.1

from which we see that the wave is indeed periodic with the period given by k¢ = 2. g takes its
maximum ¢(2 — §}1/3 at the trough where k¢ + m, thus the magnitude of the fluid velocity cannot
be larger than 21/3¢ = 1.260¢, which corresponds to the limiting wave(A = 1). At the wave crest
where £ = n = 0, from (2.13) we see that gg = ¢4/, thus the fluid velocity at the wave crest is
larger than zero in general and equal to zero only for the limiting wave.

The curvature of the free surface is negative only when |k¢| < cos™! A, as can be seen from
(2.14). Furthermore, when § < 1, approximately speaking, we have the point of zero curvature
at |k¢| = v/28. Therefore, the limiting wave has no region of negative curvature. The steeper the
basic gravity wave gets, the narrower the region of negative curvature becomes. We also note that
the approximation of the curvature (2.15) holds only where it is negative.

Asmentioned below (2.2), LH gave a justification for using the approximation (2.2). However,
as Tulin(1982) pointed out, the solution (2.10} satisfies the Stokes’ limiting wave regardless of the
value of &. Since the use of the approximation (2.2) changes the value of & in (2.8) only, we see that
it is not a pre-condition for obtaining the limiting solution. At the moment, it is acceptable simply
because (2.2) is a good approximation near the crest of highly steep waves where 8 = -7 /6.
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4.2 Perturbation solution

An assumption for the whole theory of LH is that the capillary effect is smaller than the other
terms in (1.7), and in particular the following relation should hold,

aqO 1
T 4.2
This inequality give‘; two important relations. First, since aq" = qo—a—Q substituting this in (4.2)
we have 1 & 2 4. Thus. for the function P (@) defined in (3.4), we get the following approx-
imation,
4o
Pl¢)~ = (4.3)

3‘10 = K =

ga25a75- and from (2.13) go = ¢6'/3, substitution of these in (4.2) gives gT" < 0464/ 3 for which
wc use the second equality of (3.21) to obtain

Second, since at the wave crest where § = i = 0 we have from (2.14) and (2.16) |53

2
A 3 (4.4

LH obtained A = 2.92 by using the experimental data of Cox(1958) for K in (3.21). and ar-
gued that since (4.4) is only marginally satisfied we can expect no more than rough agreement.
If we make use of the following values given by LH, ¢ = 0.3m/s, g = 9.8m/s?, T' = 7.4 x
10*5m3/32, A = 2.92, in the second equality of (3.21), we get § = 0.50, which is much greater
than originally assumed. Since X is the ratio of the inertia(or gravity) cffcet and the surface tension
effect, the fact that X is only marginally large means that the basic gravity wave is not sufficiently
steep. Furthermore, unacceptably large § implies the basic gravity wave with insufficient steep-
ness. Although this may explain the rough agreement between LH’s theoretical prediction and the
experimental data, there may be other ways of explaining the rough agreement.

First, as mentioned at the end of the last section, the solution (3.22) was obtained under the
two assumpiions that |« is large, and £ is small. Using (4.3) and (3.21), for small £ we have

chl/3 473
o= [P@ip~ [ Bapn Sp= e = ¢ @3

Thus, if || is to be large for small £, A should be really very large. In LH’s case, A was surely not
large enough, and certainly this fact can be accounted as a source of the rongh agreement.

LH neglected the effect of gravity in the perturbation equation, as stated at the beginning of
the section 3. For justifying the neglect, he also obtained a solution of higher approximation for
the homogeneous equation with the gravity term included, and showed that the steepness of the
capillary wave is proportional to gp. He then argued that g varies little compared to the surface
tension forcing near the crest, thus the capillary wave amplitude there also changes little. As (3.22)
shows, the amplitude of capillary waves when the gravity is neglected is constant b, and thus he
established the justification by saying that the neglect of gravity affects the solution little, It is
likely that his higher approximation is valid only for the region where the capillary waves are fully
formed. In the following let us consider the possibility of finding other higher approximation.
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5 A new perturbation solution

Starting from (1.14), which we differentiate with respect to ¢ to eliminate y;, we get
&q0
e’
Hereafter, since the right-hand side acts as a forcing, we may consider the homogeneous equation

only, as LH did for his higher approximation. Substituting ¢; = gg7y in (5.1), and using (3.7) and
(3.4), we have

a 7!
_¢(QOQL - T'a;:z) + qi(ﬂl cosflp — 1y sinfy) =T"
0 .

3 P =0 é.D

8 ar : '
%{T'qu(gﬁ)(a—é — )} — (;-""—O(e1 cosBp — Ty sinfp) =0, on 4 =0 (5.2)
Making use of the approximation (4.3), and carrying out differentiation for the first term, we obtain
aq(% oan 9 0 071 g .
(== -n)+gi—(— —71)— =(0Lcosy — 1 8infy) =0, on =0 5.3
¢(aﬁ 1) q08¢(aﬁ }.) qﬂ( 1 0 1 0) I(/J ( )

In the vicinity of the wave crest, we see from (2.13) that 8y ~ —£/3 < 1, thus the second term is
much smaller than the first in the third parenthesis of (5.3), and we may neglect the second term and
approximate the first term as ;. Furthermore, if we substitute dg2 /8¢ = —2g sinfy/qo, which
can be seen easily from (1.12), in the first term of (5.3), then the first term is of the same order
as the term neglected already. For his higher approximation, ILH assumed a solution, which had
slowly varying amplitude, and with this assumption the first term was also neglected. Therefore,
for further development we may neglect the first term as a whole, and we are left with

d 0
2 1L _y_99, — =
o 8(}5( aﬁ Tl) q061 0 on I(/) 0 (54)
Using (3.6) and (4.3), we can show that
8 dad _ d _q d
3 " 9990 T W5~ Toa (5-3)

If we substitute this in (5.4), and divide the result by ¢§/T", and then use the approximation
go =~ c61/3, we have

8 87'1
5‘&("53"_71) _561 —O, on T!)——O (5.6)
Here, ¢ is defined and can be expressed as
_ g 2

for which we have used (3.20} and (4.4). Extending (5.6) into the lower-half plane while (3.11) is
again taken into account, we get a second order complex differential equation

d*¢ | .dG

F—F'Eda —e(1 =0, for <0 {5.8)
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Its solution is obtained as
(1 = C1eM7 4 Cpet™” (5.9)

where €', (> arc complex constants, and -y, and o are given by

71,2:—%(1i\/1—45) (5.10)

It should be reminded that (5.10) represents free waves and that their amplitudes have to be de-
termined in relation with the forcing term. Furthermore, during the process of determining the
amplitude, it will be apparent that this solution is valid only on the forward face of the basic grav-
ity wave. Related to (5.6) and (5.7), it is clear that the gravity effect is indeed smaller than the
capillary effect as was assumed by LH. However, if we neglected the gravity term, (5.6) were a
first order differential equation, which is in fact the homogeneous version of (3.9). Without the
gravity term, the second term of the solution (5.9) would not have been obtained. We note that
if £ is larger than 1/4 in (5.10), the square-root term becomes imaginary and consequently, the
corresponding solution will damp out(or amplify) and the steepness be halved. Thus ¢ < 1/4
can be regarded as an important criterion for the generation of capillary waves. In other words,
if A > 8/3. 1,2 are all rcal and (5.9) represents free waves without damping or amplification.
In LH’s case, A was 2.92, and indeed the condition A > 8/3 is only marginally satisfied and in
consequence only a rough agreement may be expected. Since, as shown in (5.7), when ¢ is much
smaller than one, we may use the approximation /1 — 4e /1 — 2¢ in (5.10) o get

(1= Cre” 177 | Cpe 7 (5.11)

The first term corresponds to the LH's perturbation solution, and the second is entirely due to
the gravity effect. As mentioned above, if £ is sufficiently small, the second term is negligible.
However, in LH’s case, A = 2.92 gives ¢ = 0.228, and with this &, the first term is significantly
changed from e due to the gravity effect, and the second certainly not negligible.

It is hoped that the argument so far offers a more reasonable explanation of the rough agree-
ment between LLH’s theoretical prediction and the Cox’s experimental data.

6 Conclusion

We have applied the formal solution procedure to the zero-order and the perturbation problem to
obtain a complex differential equation for each case, on the other hand LH employed different
method for each problem. Interpreting the solution so attained, we could explain why LH's solu-
tion could have only a rough agreement with the experimental data of Cox(1958). In conclusion,
we note that LH’s perturbation solution is good only when the basic gravity wave is sufficiently
steep. If the steepness of the basic gravity wave is not large enough, as we have shown, the gravity
effect upon the perturbation sclution is not negligible.
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