• Title/Summary/Keyword: zero properties

Search Result 808, Processing Time 0.026 seconds

CYCLIC SUBGROUP SEPARABILITY OF HNN EXTENSIONS

  • Kim, Goansu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.2
    • /
    • pp.285-293
    • /
    • 1993
  • In [4], Baumslag and Tretkoff proved a residual finiteness criterion for HNN extensions (Theorem 1.2, below). This result has been used extensively in the study of the residual finiteness of HNN extensions. Note that every one-relator group can be embedded in a one-relator group whose relator has zero exponent sum on a generator, and the latter group can be considered as an HNN extension. Hence the properties of an HNN extension play an important role in the study of one-relator groups [3], [2]. In this paper we prove a criterion for HNN extensions to be .pi.$_{c}$(Theorem 2.2). Moreover, we can prove that certain one-relator groups, known to be residually finite, are actually .pi.$_{c}$. It was known by Mostowski [10] that the word problem is solvable for finitely presented, residually finite groups. In the same way, the power problem is solvable for finitely presented .pi.$_{c}$ groups. Another application of subgroup separability with respect to special subgroups was mentioned by Thurston [12, Problem 15].m 15].

  • PDF

Modal Characteristics of Photonic Crystal Fibers

  • Lee, Yong-Jae;Song, Dae-Sung;Kim, Se-Heon;Huh, Jun;Lee, Yong-Hee
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.188-192
    • /
    • 2003
  • The modal characteristics of the photonic crystal fibers are analyzed using the reliable and efficient plane wave expansion method. The mode profile, effective index and group velocity dispersion are obtained by solving Maxwell's vector wave equations without any approximation. The zero dispersion condition of a photonic crystal fiber is derived over a wide range of wavelengths. Higher-order modes are also easily found as a by-product of the plane wave expansion method. This method can be used to quickly and accurately design various optical properties of photonic crystal fibers.

Comparison with Dispersion Compensation Scheme Using 10 Gbit/s × 40 Channels Wavelength Division Multiplexing Transmission over 323 km of Field Installed Non-Zero Dispersion Shift Fiber

  • Kim, Geun-Young;Park, Soo-Jin;Jeong, Ki-Tae
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.112-117
    • /
    • 2006
  • We experimentally investigated the transmission characteristics of 400 Gbit/s (10 Gbit/s ${\times}$ 40 channels) WDM signals with 100 GHz channel spacing over 323 km of installed NZ_DSF. The installed fiber has optical properties of 0.28 dB/km attenuation, 4.3 ps/nm/km dispersion, $0.083ps/nm^2/km$ dispersion slope and less than $0.05ps/km^{1/2}$ PMD coefficient. In this experiment, two cases of dispersion compensation schemes, the lumped type and the distributed type, were compared. The results implied that the distributed type dispersion compensation in which dispersion compensation devices are inserted at the end of the each span showed better transmission performance than the lumped one in which dispersion compensation devices are located at the transmitter and receiver sites. From the analysis of the experimental results, we verified that different transmission performance comes from the power penalty induced by XPM in the distributed scheme is lower than the lumped scheme case.

Finite Element Analysis of Reinforced Earth Wall Behavior (보강토 옹벽의 거동에 관한 유한요소 해석)

  • 최인석;장연수;조광철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.805-812
    • /
    • 2003
  • The purpose of this study is to evaluate the behavior of a reinforced earth wall by modeling the properties of the interface between soil and reinforced elements as well as the non-linear stress-strain characteristics of soil. The effect of lateral earth pressures induced during construction is also included in the analyses. The interface element used to evaluate the relative movement of the interface between soil/reinforcement and soil/wall- facing has a zero thickness and essentially consists of normal and shear springs. The behavior of soil element is calculated based on the hyperbolic model. The computer program SSCOMPPC which includes the interface element, hyperbolic model and bi-linear model is applied in this study. From the analyses, it is showed that the locus of maximum tension were closed to the hi-linear failure line of theoretical analyses. The lateral displacement of SSCOMPPC is larger than that of the FLAC which adopts the elastic model. This means the analysis which is adopted the hyperbolic model and interface element induced more larger displacement.

  • PDF

A Study for Global Optimization Using Dynamic Encoding Algorithm for Searches

  • Kim, Nam-Geun;Kim, Jong-Wook;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.857-862
    • /
    • 2004
  • This paper analyzes properties of the recently developed nonlinear optimization method, Dynamic Encoding Algorithm for Searches (DEAS) [1]. DEAS locates local minima with binary strings (or binary matrices for multi-dimensional problems) by iterating the two operators; bisectional search (BSS) and unidirectional search (UDS). BSS increases binary strings by one digit (i.e., zero or one), while UDS performs increment or decrement to binary strings with no change of string length. Owing to these search routines, DEAS retains the optimization capability that combines the special features of several conventional optimization methods. In this paper, a special feature of BSS and UDS in DEAS is analyzed. In addition, a effective global search strategy is established by using information of DEAS. Effectiveness of the proposed global search strategy is validated through the well-known benchmark functions.

  • PDF

Adaptive Control for Tracking Trajectory of a Two-Wheeled Welding Mobile Robot with Unknown Parameters

  • Bui, Trong Hieu;Chung, Tan-Lam;Suh, Jin-Ho;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.191-196
    • /
    • 2003
  • This paper presents a method to design an adaptive controller for the kinematic model of a two-wheeled welding mobile robot (WMR) with unknown parameters. We propose a nonlinear controller based on the Lyapunov function to enhance the tracking properties of the WMR. The WMR can track any smooth curved welding path at a constant velocity of the welding point. The system has three degrees of freedom including two wheels and one torch slider. Torch slider motion is used for fast tracking. To design the tracking performance, the errors from WMR to steel wall is defined, and the controller is designed to drive the errors to zero as fast as possible. The effectiveness of the proposed controller is shown through simulation results.

  • PDF

Nanocrystals and Their Biomedical Applications

  • Jun, Young-wook;Jang, Jung-tak;Cheon, Jin-woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.7
    • /
    • pp.961-971
    • /
    • 2006
  • Shape controlled synthesis of inorganic nanocrystals is one of the important issues in materials chemistry due to their novel shape dependent properties. Although various shapes of nanocrystals have been developed, a systematic account on the shape control of these nanocrystals still remains an important subject in materials chemistry. In this article, we will overview the recent developments in the geometrical shape evolution of semiconductor and metal oxide nanocrystals obtained by nonhydrolytic synthetic methods. Many structurally unprecedented motifs have appeared as zero-dimesional (D) polyhedrons, one-D rods and wires, two-D plates and prisms, and other advanced shapes such as branched rods, stars, and inorganic dendrites. Important parameters which determine the geometrical shapes of nanocrystals are also illustrated. In addition, as a possible application of such nanocrystals for biomedical sciences, we further describe their utilizations for cancer diagnosis through nanocrystal-assisted magnetic resonance imaging (MRI).

Theoretical Approach for the Structures, Energetics and Spectroscopic Properties of (H2O3)n (n = 1-5) Clusters

  • Seo, Hyun-Il;Bahng, Jin-Ah;Kim, Yeon-Cheol;Kim, Seung-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.3017-3024
    • /
    • 2012
  • The geometrical parameters, vibrational frequencies, and binding energies for $(H_2O_3)_n$ (n = 1-5) have been investigated using various quantum mechanical techniques. The possible structures of the clusters (n = 2-5) are fully optimized and the binding energies are predicted using energy differences at each optimized geometry. The harmonic vibrational frequencies are also determined and zero-point vibrational energies (ZPVEs) are considered for the better prediction of the binding energy. The best estimation of the binding energy for the dimer is 8.65 kcal/mol. For n = 2 and 3, linear structures with all trans forms of the HOOOH monomers are predicted to be the lowest conformations in energy, while the cyclic structures with all cis-HOOOH monomers are preferable structures for n = 4 and 5.

STRUCTURE OF ZERO-DIVISORS IN SKEW POWER SERIES RINGS

  • HONG, CHAN YONG;KIM, NAM KYUN;LEE, YANG
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.663-683
    • /
    • 2015
  • In this note we study the structures of power-serieswise Armendariz rings and IFP rings when they are skewed by ring endomor-phisms (or automorphisms). We call such rings skew power-serieswise Armendariz rings and skew IFP rings, respectively. We also investigate relationships among them and construct necessary examples in the process. The results argued in this note can be extended to the ordinary ring theoretic properties of power-serieswise Armendariz rings, IFP rings, and near-related rings.

STRUCTURE OF UNIT-IFP RINGS

  • Lee, Yang
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1257-1268
    • /
    • 2018
  • In this article we first investigate a sort of unit-IFP ring by which Antoine provides very useful information to ring theory in relation with the structure of coefficients of zero-dividing polynomials. Here we are concerned with the whole shape of units and nilpotent elements in such rings. Next we study the properties of unit-IFP rings through group actions of units on nonzero nilpotent elements. We prove that if R is a unit-IFP ring such that there are finite number of orbits under the left (resp., right) action of units on nonzero nilpotent elements, then R satisfies the descending chain condition for nil left (resp., right) ideals of R and the upper nilradical of R is nilpotent.